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Foreword by David Meyer

Although the ideas underlying software-defined networking (SDN) have only recently
come into the public consciousness, a few of us who are active in the research, operator,
and vendor communities immediately saw the applicability of SDN-like techniques to
data center and service provider environments (and beyond). In addition to the explo‐
sion of innovative thinking going on in the research community, we also saw SDN as a
programmatic way to optimize, monetize, and scale networks of all kinds.

In 2011, the first organization dedicated to the growth and success of SDN began with
the Open Networking Foundation (ONF). Among its stated missions was to evolve the
OpenFlow protocol from its academic roots to a commercially viable substrate for
building networks and networking products. Within two years, the ONF’s membership
had grown to approximately 100 entities, representing the diverse interest and expect‐
ations for SDN. Against this backdrop, many of us were looking at the wider implications
of the ideas underlying SDN, and in the process, generalized SDN to include not only
OpenFlow but other forms of network programmability as well.

Early on in this process, both Tom Nadeau and Ken Gray realized that SDN was really
about general network programmability and the associated interfaces, protocols, data
models, and APIs. Using this insight, they helped to organize the SDN Birds of a Feather
session at IETF 82, in Taipei, to investigate this more general SDN model. At that meet‐
ing, Tom presented a framework for software-defined networks that envisioned SDN
as a generalized mechanism for network programmability. This work encouraged the
community to take a more general view of SDN and eventually led to the formation of
the Interface to the Routing System Working Group in the IETF.

Since that time, in addition to their many contributions to Internet technologies, Tom
and Ken have become well-respected senior members of the SDN community. They are
active participants in the core SDN industry activities and develop products for the SDN
market. Some of the key industry activities that Tom and Ken drive include the ONF,
IETF, ETSI, industry events such as SDN Summit 2012/2013, as well as open source
consortia such as the Open Daylight Project. This book draws on their deep
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understanding and experience in the field and offers a unique perspective on SDN. It
will help you understand not only the technology but also how it is being developed,
standardized, and deployed.

Tom and Ken are eminently qualified to give you a lucid understanding of the technol‐
ogy and the common-sense use and deployment of network programmability techni‐
ques. In particular, their book is an excellent and practical introduction to the
fundamentals of SDN and is filled with innumerable anecdotes explaining the ideas and
the background behind the development of SDN. So if you are interested in writing
SDN applications, building SDN capable networks, or just understanding what SDN is,
this book is for you!

—David Meyer
CTO and Chief Scientist, Brocade Communications
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Foreword by David Ward

Technological shifts that affect how developers and engineers build and design their
business architectures are monumental. These shifts are not applicable to Moore’s law
and tend to be transformations that affect not only the IT landscape but the business
landscape as well. These shifts tend to occur every 8 to 10 years and have a long-lasting
impact on how people build, consume, and distribute technologies. They also force
people to frame their business opportunities in new ways.

In 1996, Gartner coined the term “service-oriented architecture.” By 2000, it had taken
center stage with the core purpose of allowing for the easy cooperation of a large number
of computers connected over a network to exchange information via services without
human interaction. There was no need to make underlying changes to the program or
application itself. Essentially, it took on the same role as a single operating system on
one machine and applied it to the entire infrastructure of servers, allowing for more
usable, flexible, and scalable applications and services to be built, tested, deployed, and
managed. It introduced web services as the de facto way to make functional building
blocks accessible over standard Internet protocols independent of platforms and lan‐
guages—allowing for faster and easier development, testing, deployment, and manage‐
ability of IT infrastructures. SOA drastically changed the way developers, their man‐
agers, and the business looked at technology.

When you look at software-defined networking, you see similarities. The network is the
cornerstone of IT in that it can enable new architectures that in turn create new business
opportunities. In essence, it allows IT to become more relevant than ever and the enabler
of new business. The network is now the largest business enabler if architected and
utilized in the correct way—allowing for the network, server, and storage to be tied
together to enable the principles of SOA to be executed at the network layer. SDN and
APIs to the network change the accessibility to programming intent and receiving state
from the network and services, thus overcoming the traditional view that the network
has to be built and run by magicians. However, when SOA principles become applied
to the networking layer, the network becomes more accessible, programmable, and
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flexible, allowing organizations to actually shift IT at the speed that the business moves,
all while adding increased value to the business in new ways.

But what is a software-defined network? There are many camps that have varying def‐
initions. When broken down into simple terms, it needs to be looked at as an approach
or architecture to not only simplify your network but also to make it more reactive to
the requirements of workloads and services placed in the network. IT infrastructure
needs to move at the speed of business opportunities and must enable new ways to do
business quickly, flexibly, and faster than before. A pragmatic definition is this: SDN
functionally enables the network to be accessed by operators programmatically, allow‐
ing for automated management and orchestration techniques; application of configu‐
ration policy across multiple routers, switches, and servers; and the decoupling of the
application that performs these operations from the network device’s operating system.

As SDN becomes increasingly the buzzword of multiple industries, it’s worthwhile to
take a look at why SDN came about. Historically, network configuration state has re‐
mained largely static, unchanged, and commonly untouchable. Manual configuration
and CLI-based configuration on a device-by-device basis was the norm, and network
management constituted the basic “screen scraping” or use of Expect scripts as a way
to solve manageability problems and core scalability issues (cut-and-paste methodol‐
ogy). The highest end of programmatic interfaces included XML interfaces and on-
board Perl, Tk/Tcl, and Expect. However, when you’re dealing with multiple routers,
switches, and servers working as a system (and services that are routing traffic across
multiple domains with different users, permissions, and policies), control and man‐
agement state needs to be applied across the network as an operation. Element-by-
element management simply doesn’t provide enough flexibility and agility or the notion
of dynamic or ephemeral data (configuration and state not persistently held in the config
file). But as service-oriented architecture principles started to shift southbound down
the stack and the realization of their application at the networking layer was recognized,
new architectures—coupled with advancements in networking—allowed for software-
defined networking to emerge and users to realize the power that the network was
capable of in new ways.

Yes, it’s true that there is a history of protocol interfaces to routers, switches, servers,
gateways, and so on. Decades of deployment of the current Internet that program dy‐
namic data associated with subscribers, sessions, and applications does currently exist
and is widely deployed. These protocol servers (e.g., Radius, Diameter, PCMM, COPS,
3GPP) all could be considered early forms of SDN, so why aren’t they? What’s a bit
different now is that one major functionality of the SDN architecture is the ability to
write applications on top of a platform that customizes data from different sources or
data bases into one network-wide operation.

SDN is also an architecture that allows for a centrally managed and distributed control,
management, and data plane, where policy that dictates the forwarding rules is
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centralized, while the actual forwarding rule processing is distributed among multiple
devices. In this model, application policy calculation (e.g., QoS, access control lists, and
tunnel creation) happens locally in real time and the quality, security, and monitoring
of policies are managed centrally and then pushed to the switching/routing nodes. This
allows for more flexibility, control, and scalability of the network itself, and the use of
templates, variables, multiple databases of users, and policies all working in combination
to derive or compile the desired configuration and state to be downloaded to the routers
and switches. What’s key to understand is that SDN doesn’t replace the control plane
on the router or switch. It augments them. How? By having a view of the entire network
all at once versus only from one position in the topology (e.g., the router or switch).
The marriage of dynamic routing and signaling and a centralized view is incredibly
powerful. It enables the fastest possible protection in the event of a failure, the greatest
resiliency, and the ability to place services into a network in one command. The two
technologies working together are really a major step forward that wasn’t previously in
our toolbox.

There are a few variations on the SDN theme and some oft spoken components to be
considered. OpenFlow is one, which architecturally separates the control and manage‐
ment planes from the data plane on the networking device. This allows for a centralized
controller to manage the flows in the forwarding nodes. However, OpenFlow is only
one protocol and one element of SDN. There are many other protocols now. Some
examples include I2RS, PCE-P, BGP-LS, FORCES, OMI, and NetConf/Yang. All of these
are also open standards. What’s important to remember is that SDN is not a protocol;
it’s an operational and programming architecture.

What do we get from SDN? The architecture brings the network and networking data
closer to the application layer and the applications closer to the networking layer. As
practiced in SOA, no longer is there the need for a human element or scripting languages
to act as humans to distribute data and information bidirectionally because APIs and
tooling now have evolved in a way that this can be delivered in a secure and scalable
way via open interfaces and interoperability. The data in the network (e.g., stats, state,
subscriber info, service state, security, peering, etc.) can be analyzed and used by an
application to create policy intent and program the network into a new configuration.
It can be programmed this way persistently or only ephemerally.

Programmability (i.e., the ability to access the network via APIs and open interfaces) is
central to SDN. The notion of removing the control and management planes to an off-
switch/router application connected to the networking device by SDN protocols is
equally important. This off-box application is really what software developers would
call a “platform,” as it has its own set of APIs, logic, and the ability for an application to
make requests to the network, receive events, and speak the SDN protocols. What’s key
here is that programmers don’t need to know the SDN protocols because they write to
the controller’s APIs. Programmers don’t need to know the different configuration syn‐
tax or semantics of different networking devices because they program to a set of APIs
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on the controller that can speak to many different devices. Different vendors, eras of
equipment, and classes of equipment (e.g., transport, simple switches, wireless base
stations, subscriber termination gateways, peering routers, core routers, and servers)
all are on the trajectory to be able to be programmed by the SDN protocols that plug
into the bottom of the controller. The programmer only uses the APIs on the top of the
controller to automate, orchestrate, and operate the network. This doesn’t necessarily
mean there is a grand unification theory of controllers and one to serve all layers and
functions of networking, but what it does mean is that the network now has been ab‐
stracted and is being programmed off box. Thus, when integrated into an IaaS (Infra‐
structure as a Service) layer in a stack, OSS, or IT system, the network is being automated
and orchestrated as fast as users log onto the net and as fast as workloads are being spun
up on servers.

The use of new tooling practices typically utilized by system administrators and new
available to network operators are related to the whole SDN movement. Tools such as
Puppet, Chef, CFEngine, and others are being used to automate and orchestrate the
network in new ways as plug-ins can now be created to utilize the network data via the
open interfaces of the network. Controller APIs also allow for easier and faster ways to
build and apply policy across the network in multiple languages and with integration
into existing tools such as IDEs (NetBeans, Eclipse, et al.). This allows for a better user
experience for network engineers versus the traditionally used CLI model.

Before we dig into examples, it’s important to understand what SDN actually solves and
why there is a shift to this particular architecture. As networks evolve and new services
are deployed, it’s critical to implement new ways for users to more easily provision and
orchestrate network resources in real time. By implementing this, cost can be reduced
by the automation of moving resources around faster and more reliably, and by allowing
the network to respond directly to a request from an application (versus the intervention
by a human). This allows for operators to use programmatic (scalable) control versus
manual to create and apply these services in a way that is simpler than a command-line
interface. Additionally, it enables the ability to utilize new resources from the network
(user data, traffic path information, etc.) and create new types of applications that can
control policy for the network in a scalable fashion. It also allows for the optimization
of infrastructure, services, and applications by allowing for new network data and ca‐
pabilities to be extended and applied into the aforementioned architecture, creating new
ways to not only optimize existing applications but also to insert new services or offer‐
ings that can provide a better user experience or create a new offering or advanced
feature that could be monetized.

As SDN evolves, it’s important to look at some implementations to understand why it’s
so critical for multiple industries (e.g., video delivery, user services and mobile, cable
and broadband, security, and provider edge) to embrace. Where SDN reaches its po‐
tential, however, is when you look at it for not just programming the network functions
and scaling those across your infrastructure, but also for actually tying server, storage,
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and the network together for new use cases. In this case, systems can actually interact
with each other, allowing for more infrastructure flexibility, whether physical, virtual,
or hybrid.

Traffic policy and rerouting based on network conditions and/or regulation shifts are
also common applications, as are the insertion of new services or data into applications
that may be able to more clearly prioritize bandwidth for a user that pays a premium
amount for faster connection speeds. When you apply SDN and a centralized manage‐
ment plane that is separate from the data plane, you can more quickly make decisions
on where data traffic can be rerouted, as this can occur programmatically with software
interfaces (APIs), versus on-the-box CLI methodology.

One advanced use case is the hybrid cloud. In this case, an application may run in a
private cloud or data center yet utilize the public cloud when the demand for computing
capacity spikes or cost can be reduced. Historically, cloud bursting was typically used
only in environments with non-mission critical applications or services, but with the
network tie-in and software principles applied, the use case shifts. Applications now
remain in compliance with the IT organizations’ policies and regulations. The applica‐
tion can also retain its dependency model if it is reliant on different data or information
that it typically has on premises versus off, or in the public cloud environment. It also
allows for the application to run across different platforms regardless of where the ap‐
plication was built.

As we look at SDN, we must also consider Network Functions Virtualization and how
this ties into the broader infrastructure and virtualization picture. The transition from
physical to virtual is one that is leading many of these changes in the industry. By tying
the hardware (physical) to software (virtual), including network, server, and storage,
there’s the opportunity to virtualize network services and have them orchestrated as fast
as any other workload. Tie this via programmatic interfaces to the WAN, and you can
absolutely guarantee service delivery. SDN coupled with NFV is a pivotal architectural
shift in both computing and networking. This shift is marked by dynamic changes to
infrastructure to closely match customer demand, analytics to assist in predicting per‐
formance requirements, and a set of management and orchestration tools that allow
network functions and applications to scale up, down, and out with greater speed and
less manual intervention. This change affects how we build cloud platforms for appli‐
cations and at the most basic level must provide the tools and techniques that allow the
network to respond to changing workload requirements as quickly as the platforms that
leverage them. It also allows workload requirements to include network requirements
and have them satisfied.

It’s important to note that not all networks are the same, and that’s why it’s critical to
understand the importance of the underlying infrastructure when abstracting control
from the network—either from physical or virtual devices. Network Functions Virtu‐
alization is simply the addition of virtual or off-premises devices to augment traditional
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infrastructure. However, the tie to both the on- and off-premises offerings must be
considered when running applications and services to ensure a seamless experience not
just for the organization running the applications or services but also for the consumer
of the services (whether they be enterprise and in-house users or external customers).

So why should you care? From a technical perspective, SDN allows for more flexibility
and agility as well as options for your infrastructure. By allowing data to be controlled
centrally and tied into not just the network, but also the storage and server, you get a
more cohesive view on performance, speed, traffic optimization, and service guarantees.
With programmatic interfaces (APIs) that can be exposed in multiple languages and
utilized with tools, your operators and administrators can more quickly respond to the
demand of the business side of the house or external customer needs. They can now
apply policies for other development organizations in-house to allow them network
data to more effectively spin up server farms or even build applications with network
intelligence built in for faster, better performing applications. By allowing for the data
to be exposed in a secure and scalable way, the entire IT organization benefits, and with
faster development and deployment cycles and easier delivery of new services, so too
does the business. The promise that SOA gave developers—write once, run anywhere
—can now be fully realized with the underlying network’s ability to distribute infor‐
mation across the enterprise, access, WAN, and data center (both physical and virtual).
This allows for applications to break free from the boundaries of the OSS and manage‐
ment platforms that had previously limited their ability to run in different environments.

The IT industry is going through a massive shift that will revolutionize the way users
build, test, deploy, and monetize their applications. With SDN, the network is now closer
to applications (and vice versa), allowing for a new breed of smarter, faster, and better
performing applications. It enables the network to be automated in new ways, providing
more flexibility and scalability for users, and unleashes the potential for business cost
savings and revenue-generating opportunities. It’s a new era in networking and the IT
industry overall, and it will be a game-changing one. Check out this book—it’s required
reading.

—David Ward
CTO, Cisco Systems
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1. The real answer is that one of the authors has a fondness for ducks, as he raises Muscovy Ducks on his family
farm.

Preface

The first question most readers of an O’Reilly book might ask is about the choice of the
cover animal. In this case, “why a duck?” Well, for the record, our first choice was a
unicorn decked out in glitter and a rainbow sash.

That response always gets a laugh (we are sure you just giggled a little), but it also brings
to the surface a common perception of software-defined networks among many expe‐
rienced network professionals. Although we think there is some truth to this perception,
there is certainly more meat than myth to this unicorn.

So, starting over, the better answer to that first question is that the movement of a
duck1 is not just what one sees on the water; most of the action is under the water, which
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2. http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp

you can’t easily see. Under the waterline, some very muscular feet are paddling away to
move that duck along. In many ways, this is analogous to the progress of software-
defined networks.

The surface view of SDN might lead the casual observer to conclude a few things. First,
defining what SDN is, or might be, is something many organizations are frantically
trying to do in order to resuscitate their business plans or revive their standards-
developing organizations (SDOs). Second, that SDN is all about the active rebranding
of existing products to be this mythical thing that they are not. Many have claimed that
products they built four or five years ago were the origins of SDN, and therefore ev‐
erything they have done since is SDN, too.

Along these lines, the branding of seemingly everything anew as SDN and the expected
hyperbole of the startup community that SDN has been spawning for the past three or
four years have also contributed negatively toward this end.

If observers are predisposed by their respective network religions and politics to dismiss
SDN, it may seem like SDN is an idea adrift.

Now go ahead and arm yourself with a quick pointer to the Gartner hype-cycle.2 We
understand that perspective and can see where that cycle predicts things are at.

Some of these same aspects of the present SDN movement made us lobby hard for the
glitter-horned unicorn just to make a point—that we see things differently.

For more than two years, our involvement in various customer meetings, forums, con‐
sortia, and SDOs discussing the topic, as well as our work with many of the startups,
converts, and early adopters in the SDN space, leads us to believe that something worth
noting is going on under the waterline. This is where much of the real work is going on
to push the SDN effort forward toward a goal of what we think is optimal operational
efficiency and flexibility for networks and applications that utilize those networks.

There is real evidence that SDN has finally started a new dialogue about network pro‐
grammability, control models, the modernization of application interfaces to the net‐
work, and true openness around these things.

In that light, SDN is not constrained to a single network domain such as the data center
—although it is true that the tidal wave of manageable network endpoints hatched via
virtualization is a prime mover of SDN at present. SDN is also not constrained to a single
customer type (e.g., research/education), a single application (e.g., data center orches‐
tration), or even a single protocol/architecture (e.g., OpenFlow). Nor is SDN constrain‐
ed to a single architectural model (e.g., the canonical model of a centralized controller
and a group of droid switches). We hope you see that in this book.
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At the time of writing of the first edition of this book, both Thomas Nadeau and Ken
Gray work at Juniper Networks in the Platform Systems Division Chief Technologist’s
Office. We both also have extensive experience that spans roles both with other vendors,
such as Cisco Systems, and service providers, such as BT and Bell Atlantic (now Veri‐
zon). We have tried our best to be inclusive of everyone that is relevant in the SDN space
without being encyclopedic on the topic still providing enough breadth of material to
cover the space. In some cases, we have relied on references or examples that came from
our experiences with our most recent employer (Juniper Networks) in the text, only
because they are either part of a larger survey or because alternative examples on the
topic are net yet freely available for us to divulge. We hope the reader finds any bias to
be accidental and not distracting or overwhelming. If this can be corrected or enhanced
in a subsequent revision, we will do so. We both agree that there are likely to be many
updates to this text going forward, given how young SDN still is and how rapidly it
continues to evolve.

Finally, we hope the reader finds the depth and breadth of information presented herein
to be interesting and informative, while at the same time evocative. We give our opinions
about topics, but only after presenting the material and its pros and cons in as unbiased
a manner as possible.

We do hope you find unicorns, fairy dust, and especially lots of paddling feet in this
book.

Assumptions
SDN is a new approach to the current world of networking, but it is still networking.
As you get into this book, we’re assuming a certain level of networking knowledge. You
don’t have to be an engineer, but knowing how networking principles work—and
frankly, don’t work—will aid your comprehension of the text.

You should be familiar with the following terms/concepts:
OSI model

The Open Systems Interconnection (OSI) model defines seven different layers of
technology: physical, data link, network, transport, session, presentation, and ap‐
plication. This model allows network engineers and network vendors to easily dis‐
cuss and apply technology to a specific OSI level. This segmentation lets engineers
divide the overall problem of getting one application to talk to another into discrete
parts and more manageable sections. Each level has certain attributes that describe
it and each level interacts with its neighboring levels in a very well-defined manner.
Knowledge of the layers above layer 7 is not mandatory, but understanding that
interoperability is not always about electrons and photons will help.
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Switches
These devices operate at layer 2 of the OSI model and use logical local addressing
to move frames across a network. Devices in this category include Ethernet in all
its variations, VLANs, aggregates, and redundancies.

Routers
These devices operate at layer 3 of the OSI model and connect IP subnets to each
other. Routers move packets across a network in a hop-by-hop fashion.

Ethernet
These broadcast domains connect multiple hosts together on a common infra‐
structure. Hosts communicate with each other using layer 2 media access control
(MAC) addresses.

IP addressing and subnetting
Hosts using IP to communicate with each other use 32-bit addresses. Humans often
use a dotted decimal format to represent this address. This address notation in‐
cludes a network portion and a host portion, which is normally displayed as
192.168.1.1/24.

TCP and UDP
These layer 4 protocols define methods for communicating between hosts. The
Transmission Control Protocol (TCP) provides for connection-oriented commu‐
nications, whereas the User Datagram Protocol (UDP) uses a connectionless para‐
digm. Other benefits of using TCP include flow control, windowing/buffering, and
explicit acknowledgments.

ICMP
Network engineers use this protocol to troubleshoot and operate a network, as it is
the core protocol used (on some platforms) by the ping and traceroute programs.
In addition, the Internet Control Message Protocol (ICMP) is used to signal error
and other messages between hosts in an IP-based network.

Data center
A facility used to house computer systems and associated components, such as
telecommunications and storage systems. It generally includes redundant or back‐
up power supplies, redundant data communications connections, environmental
controls (e.g., air conditioning and fire suppression), and security devices. Large
data centers are industrial-scale operations that use as much electricity as a small
town.

MPLS
Multiprotocol Label Switching (MPLS) is a mechanism in high-performance net‐
works that directs data from one network node to the next based on short path
labels rather than long network addresses, avoiding complex lookups in a routing
table. The labels identify virtual links (paths) between distant nodes rather than
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endpoints. MPLS can encapsulate packets of various network protocols. MPLS
supports a range of access technologies.

Northbound interface
An interface that conceptualizes the lower-level details (e.g., data or functions) used
by, or in, the component. It is used to interface with higher-level layers using the
southbound interface of the higher-level component(s). In architectural overview,
the northbound interface is normally drawn at the top of the component it is defined
in, hence the name northbound interface. Examples of a northbound interface are
JSON or Thrift.

Southbound interface
An interface that conceptualizes the opposite of a northbound interface. The south‐
bound interface is normally drawn at the bottom of an architectural diagram.
Examples of southbound interfaces include I2RS, NETCONF, or a command-line
interface.

Network topology
The arrangement of the various elements (links, nodes, interfaces, hosts, etc.) of a
computer network. Essentially, it is the topological structure of a network and may
be depicted physically or logically. Physical topology refers to the placement of the
network’s various components, including device location and cable installation,
while logical topology shows how data flows within a network, regardless of its
physical design. Distances between nodes, physical interconnections, transmission
rates, and/or signal types may differ between two networks, yet their topologies
may be identical.

Application programming interfaces
A specification of how some software components should interact with each other.
In practice, an API is usually a library that includes specification for variables,
routines, object classes, and data structures. An API specification can take many
forms, including an international standard (e.g., POSIX), vendor documentation
(e.g., the JunOS SDK), or the libraries of a programming language.

What’s in This Book?
Chapter 1, Introduction

This chapter introduces and frames the conversation this book engages in around
the concepts of SDN, where they came from, and why they are important to discuss.

Chapter 2, Centralized and Distributed Control and Data Planes
SDN is often framed as a decision between a distributed/consensus or centralized
network control-plane model for future network architectures. In this chapter, we
visit the fundamentals of distributed and central control, how the data plane is
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3. Yes, we have had centralized control models in the past!

generated in both, past history with both models,3 some assumed functionality in
the present distributed/consensus model that we may expect to translate into any
substitute, and the merits of these models.

Chapter 3, OpenFlow
OpenFlow has been marketed either as equivalent to SDN (i.e., OpenFlow is SDN)
or a critical component of SDN, depending on the whim of the marketing of the
Open Networking Foundation. It can certainly be credited with sparking the dis‐
cussion of the centralized control model. In this chapter, we visit the current state
of the OpenFlow model.

Chapter 4, SDN Controllers
For some, the discussion of SDN technology is all about the management of network
state, and that is the role of the SDN controller. In this chapter, we survey the con‐
trollers available (both open source and commercial), their structure and capabil‐
ities, and then compare them to an idealized model (that is developed in Chapter 9).

Chapter 5, Network Programmability
This chapter introduces network programmability as one of the key tenets of SDN.
It first describes the problem of the network divide that essentially boils down to
older management interfaces and paradigms keeping applications at arm’s length
from the network. In the chapter, we show why this is a bad thing and how it can
be rectified using modern programmatic interfaces. This chapter firmly sets the
tone for what concrete changes are happening in the real world of applications and
network devices that are following the SDN paradigm shift.

Chapter 6, Data Center Concepts and Constructs
This chapter introduces the reader to the notion of the modern data center through
an initial exploration of the historical evolution of the desktop-centric world of the
late 1990s to the highly distributed world we live in today, in which applications—
as well as the actual pieces that make up applications—are distributed across mul‐
tiple data centers. Multitenancy is introduced as a key driver for virtualization in
the data center, as well as other techniques around virtualization. Finally, we explain
why these things form some of the keys to the SDN approach and why they are
driving much of the SDN movement.

Chapter 7, Network Function Virtualization
In this chapter, we build on some of the SDN concepts that were introduced earlier,
such as programmability, controllers, virtualization, and data center concepts. The
chapter explores one of the cutting-edge areas for SDN, which takes key concepts
and components and puts them together in such a way that not only allows one to
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virtualize services, but also to connect those instances together in new and inter‐
esting ways.

Chapter 8, Network Topology and Topological Information Abstraction
This chapter introduces the reader to the notion of network topology, not only as
it exists today but also how it has evolved over time. We discuss why network top‐
ology—its discovery, ongoing maintenance, as well as an application’s interaction
with it—is critical to many of the SDN concepts, including NFV. We discuss a
number of ways in which this nut has been partially cracked and how more recently,
the IETF’s I2RS effort may have finally cracked it for good.

Chapter 9, Building an SDN Framework
This chapter describes an idealized SDN framework for SDN controllers, applica‐
tions, and ecosystems. This concept is quite important in that it forms the archi‐
tectural basis for all of the SDN controller offerings available today and also shows
a glimpse of where they can or are going in terms of their evolution. In the chapter,
we present the various incarnations and evolutions of such a framework over time
and ultimately land on the one that now forms the Open Daylight Consortium’s
approach. This approach to an idealized framework is the best that we reckon exists
today both because it is technically sound and pragmatic, and also because it very
closely resembles the one that we embarked on ourselves after quite a lot of trial
and error.

Chapter 10, Use Cases for Bandwidth Scheduling, Manipulation, and Calendaring
This chapter presents the reader with a number of use cases that fall under the areas
of bandwidth scheduling, manipulation, and bandwidth calendaring. We demon‐
strate use cases that we have actually constructed in the lab as proof-of-concept
trials, as well as those that others have instrumented in their own lab environments.
These proof-of-concept approaches have funneled their way into some production
applications, so while they may be toy examples, they do have real-world applica‐
bility.

Chapter 11, Use Cases for Data Center Overlays, Big Data, and Network Function Vir‐
tualization

This chapter shows some use cases that fall under the areas of data centers. Specif‐
ically, we show some interesting use cases around data center overlays, and network
function virtualization. We also show how big data can play a role in driving some
SDN concepts.

Chapter 12, Use Cases for Input Traffic Monitoring, Classification, and Triggered Ac‐
tions

This chapter presents the reader with some use cases in the input traffic/triggered
actions category. These uses cases concern themselves with the general action of
receiving some traffic at the edge of the network and then taking some action. The
action might be preprogrammed via a centralized controller, or a device might need
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to ask a controller what to do once certain traffic is encountered. Here we present
two use cases to demonstrate these concepts. First, we show how we built a proof
of concept that effectively replaced the Network Access Control (NAC) protocol
and its moving parts with an OpenFlow controller and some real routers. This
solved a real problem at a large enterprise that could not have been easily solved
otherwise. We also show a case of how a virtual firewall can be used to detect and
trigger certain actions based on controller interaction.

Chapter 13, Final Thoughts and Conclusions
This chapter brings the book into the present tense—re-emphasizing some of our
fundamental opinions on the current state of SDN (as of this writing) and providing
a few final observations on the topic.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions, types,
classes, namespaces, methods, modules, properties, parameters, values, objects,
events, event handlers, XML tags, HTML tags, macros, the contents of files, and the
output from commands.

Constant width bold

Shows commands and other text that should be typed literally by the user, as well
as important lines of code.

Constant width italic
Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.
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Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
http://oreil.ly/SDN_1e. This page hosts a .txt file of the complete configurations used in
Chapter 10’s use case. You may download the configurations for use in your own lab.

This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN, for example: “SDN: Software-Defined Networks by Thomas
D. Nadeau and Ken Gray. Copyright 2013 Thomas D. Nadeau and Ken Gray,
978-1-449-34230-2.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-
demand digital library that delivers expert content in both book and
video form from the world’s leading authors in technology and busi‐
ness.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.
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How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/SDN_1e. The authors also have
created a blog and discussion forum about SDN and network programmability at http://
sdnprogrammability.net.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1

Introduction

Up until a few years ago, storage, computing, and network resources were intentionally
kept physically and operationally separate from one another. Even the systems used to
manage those resources were separated—often physically. Applications that interacted
with any of these resources, such as an operational monitoring system, were also kept
at arm’s length significantly involved access policies, systems, and access procedures all
in the name of security. This is the way IT departments liked it. It was really only after
the introduction of (and demand for) inexpensive computing power, storage, and net‐
working in data center environments that organizations were forced to bring these dif‐
ferent elements together. It was a paradigm shift that also brought applications that
manage and operate these resources much, much closer than ever before.

Data centers were originally designed to physically separate traditional computing el‐
ements (e.g., PC servers), their associated storage, and the networks that interconnected
them with client users. The computing power that existed in these types of data centers
became focused on specific server functionality—running applications such as mail
servers, database servers, or other such widely used functionality in order to serve
desktop clients. Previously, those functions—which were executed on the often thou‐
sands (or more) of desktops within an enterprise organization—were handled by de‐
partmental servers that provided services dedicated only to local use. As time went on,
the departmental servers migrated into the data center for a variety of reasons—first
and foremost, to facilitate ease of management, and second, to enable sharing among
the enterprise’s users.

It was around 10 years ago that an interesting transformation took place. A company
called VMware had invented an interesting technology that allowed a host operating
system such as one of the popular Linux distributions to execute one or more client
operating systems (e.g., Windows). What VMware did was to create a small program
that created a virtual environment that synthesized a real computing environment (e.g.,
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virtual NIC, BIOS, sound adapter, and video). It then marshaled real resources between
the virtual machines. This supervisory program was called a hypervisor.

Originally, VMware was designed for engineers who wanted to run Linux for most of
their computing needs and Windows (which was the corporate norm at the time) only
for those situations that required that specific OS environment to execute. When they
were finished, they would simply close Windows as if it were another program, and
continue on with Linux. This had the interesting effect of allowing a user to treat the
client operating system as if it were just a program consisting of a file (albeit large) that
existed on her hard disk. That file could be manipulated as any other file could be (i.e.,
it could be moved or copied to other machines and executed there as if it were running
on the machine on which it was originally installed). Even more interestingly, the op‐
erating system could be paused without it knowing, essentially causing it to enter into
a state of suspended animation.

With the advent of operating system virtualization, the servers that typically ran a single,
dedicated operating system, such as Microsoft Windows Server, and the applications
specifically tailored for that operating system could now be viewed as a ubiquitous
computing and storage platform. With further advances and increases in memory,
computing, and storage, data center compute servers were increasingly capable of ex‐
ecuting a variety of operating systems simultaneously in a virtual environment. VMware
expanded its single-host version to a more data-center-friendly environment that was
capable of executing and controlling many hundreds or thousands of virtual machines
from a single console. Operating systems such as Windows Server that previously oc‐
cupied an entire “bare metal” machine were now executed as virtual machines, each
running whatever applications client users demanded. The only difference was that each
was executing in its own self-contained environment that could be paused, relocated,
cloned, or copied (i.e., as a backup). Thus began the age of elastic computing.

Within the elastic computing environment, operations departments were able to move
servers to any physical data center location simply by pausing a virtual machine and
copying a file. They could even spin up new virtual machines simply by cloning the
same file and telling the hypervisor to execute it as a new instance. This flexibility al‐
lowed network operators to start optimizing the data center resource location and thus
utilization based on metrics such as power and cooling. By packing together all active
machines, an operator could turn down cooling in another part of a data center by
sleeping or idling entire banks or rows of physical machines, thus optimizing the cooling
load on a data center. Similarly, an operator could move or dynamically expand com‐
puting, storage, or network resources by geographical demand.

As with all advances in technology, this newly discovered flexibility in operational de‐
ployment of computing, storage, and networking resources brought about a new prob‐
lem: one not only of operational efficiency both in terms of maximizing the utilization
of storage and computing power, but also in terms of power and cooling. As mentioned
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earlier, network operators began to realize that computing power demand in general
increased over time. To keep up with this demand, IT departments (which typically
budget on a yearly basis) would order all the equipment they predicted would be needed
for the following year. However, once this equipment arrived and was placed in racks,
it would consume power, cooling, and space resources—even if it was not yet used! This
was the dilemma discovered first at Amazon. At the time, Amazon’s business was grow‐
ing at the rate of a “hockey stick” graph—doubling every six to nine months. As a result,
growth had to stay ahead of demand for its computing services, which served its retail
ordering, stock, and warehouse management systems, as well as internal IT systems. As
a result, Amazon’s IT department was forced to order large quantities of storage, net‐
work, and computing resources in advance, but faced the dilemma of having that
equipment sit idle until the demand caught up with those resources. Amazon Web
Services (AWS) was invented as a way to commercialize this unused resource pool so
that it would be utilized at a rate closer to 100%. When internal resources needed more
resources, AWS would simply push off retail users, and when it was not, retail compute
users could use up the unused resources. Some call this elastic computing services, but
this book calls it hyper virtualization.

It was only then that companies like Amazon and Rackspace, which were buying storage
and computing in huge quantities for pricing efficiency, realized they were not efficiently
utilizing all of their computing and storage and could resell their spare computing power
and storage to external users in an effort to recoup some of their capital investments.
This gave rise to a multitenant data center. This of course created a new problem, which
was how to separate thousands of potential tenants, whose resources needed to be spread
arbitrarily across different physical data centers’ virtual machines.

Another way to understand this dilemma is to note that during the move to hyper
virtualized environments, execution environments were generally run by a single en‐
terprise or organization. That is, they typically owned and operated all of the computing
and storage (although some rented co-location space) as if they were a single, flat local
area network (LAN) interconnecting a large number of virtual or physical machines
and network attached storage. (The exception was in financial institutions where reg‐
ulatory requirements mandated separation.) However, the number of departments in
these cases was relatively small—fewer than 100—and so this was easily solved using
existing tools such as layer 2 or layer 3 MPLS VPNs. In both cases, though, the network
components that linked all of the computing and storage resources up until that point
were rather simplistic; it was generally a flat Ethernet LAN that connected all of the
physical and virtual machines. Most of these environments assigned IP addresses to all
of the devices (virtual or physical) in the network from a single network (perhaps with
IP subnets), as a single enterprise owned the machines and needed access to them. This
also meant that it was generally not a problem moving virtual machines between dif‐
ferent data centers located within that enterprise because, again, they all fell within the
same routed domain and could reach one another regardless of physical location.
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In a multitenant data center, computing, storage, and network resources can be offered
in slices that are independent or isolated from one another. It is, in fact, critical that they
are kept separate. This posed some interesting challenges that were not present in the
single tenant data center environment of the past. Keep in mind that their environment
allowed for the execution of any number of operating systems and applications on top
of those operating systems, but each needed a unique network address if it was to be
accessed by its owner or other external users such as customer. In the past, addresses
could be assigned from a single, internal block of possibly private addresses and routed
internally easily. Now, however, you needed to assign unique addresses that are exter‐
nally routable and accessible. Furthermore, consider that each virtual machine in ques‐
tion had a unique layer 2 address as well. When a router delivers a packet, it ultimately
has to deliver a packet using Ethernet (not just IP). This is generally not an issue until
you consider virtual machine mobility (VM mobility). In these cases, virtual machines
are relocated for power, cooling, or computing compacting reasons. In here lies the rub
because physical relocation means physical address relocation. It also possibly means
changes to layer 3 routing in order to ensure packets previously destined for that ma‐
chine in its original location can now be changed to its new location.

At the same time data centers were evolving, network equipment seemed to stand still
in terms of innovations beyond feeds and speeds. That is, beyond the steady increase
in switch fabric capacities and interface speeds, data communications had not evolved
much since the advent of IP, MPLS, and mobile technologies. IP and MPLS allowed a
network operator to create networks and virtual network overlays on top of those base
networks much in the way that data center operators were able to create virtual machines
to run over physical ones with the advent of computing virtualization. Network virtu‐
alization was generally referred to as virtual private networks (VPN) and came in a
number of flavors, including point-to-point (e.g., a personal VPN as you might run on
your laptop and connect to your corporate network); layer 3 (virtualizing an IP or routed
network in cases such as to allow a network operator to securely host enterprise in a
manner that isolated their traffic from other enterprise); and layer 2 VPNs (switched
network virtualization that isolates similarly to a layer 3 VPN except that the addresses
used are Ethernet).

Commercial routers and switches typically come with management interfaces that allow
a network operator to configure and otherwise manage these devices. Some examples
of management interfaces include command line interfaces, XML/Netconf, graphical
user interfaces (GUIs), and the Simple Network Management Protocol (SNMP). These
options provide an interface that allows an operator suitable access to a device’s capa‐
bilities, but they still often hide the lowest levels of details from the operator. For ex‐
ample, network operators can program static routes or other static forwarding entries,
but those ultimately are requests that are passed through the device’s operating system.
This is generally not a problem until one wants to program using syntax or semantics
of functionality that exists in a device. If someone wishes to experiment with some new
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routing protocol, they cannot on a device where the firmware has not been written to
support that protocol. In such cases, it was common for a customer to make a feature
enhancement request of a device vendor, and then typically wait some amount of time
(several years was not out of the ordinary).

At the same time, the concept of a distributed (at least logically) control plane came
back onto the scene. A network device is comprised of a data plane that is often a switch
fabric connecting the various network ports on a device and a control plane that is the
brains of a device. For example, routing protocols that are used to construct loop-free
paths within a network are most often implemented in a distributed manner. That is,
each device in the network has a control plane that implements the protocol. These
communicate with each other to coordinate network path construction. However, in a
centralized control plane paradigm, one single (or at least logical) control plane would
exist. This über brain would push commands to each device, thus commanding it to
manipulate its physical switching and routing hardware. It is important to note that
although the hardware that executed data planes of devices remained quite specialized,
and thus expensive, the control plane continued to gravitate toward less and less ex‐
pensive, general-purpose computing, such as those central processing units produced
by Intel.

All of these aforementioned concepts are important, as they created the nucleus of mo‐
tivation for what has evolved into what today is called software-defined networking
(SDN). Early proponents of SDN saw that network device vendors were not meeting
their needs, particularly in the feature development and innovation spaces. High-end
routing and switching equipment was also viewed as being highly overpriced for at least
the control plane components of their devices. At the same time, they saw the cost of
raw, elastic computing power diminishing rapidly to the point where having thousands
of processors at one’s disposal was a reality. It was then that they realized that this pro‐
cessing power could possibly be harnessed to run a logically centralized control plane
and potentially even use inexpensive, commodity-priced switching hardware. A few
engineers from Stanford University created a protocol called OpenFlow that could be
implemented in just such a configuration. OpenFlow was architected for a number of
devices containing only data planes to respond to commands sent to them from a (log‐
ically) centralized controller that housed the single control plane for that network. The
controller was responsible for maintaining all of the network paths, as well as program‐
ming each of the network devices it controlled. The commands and responses to those
commands are described in the OpenFlow protocol. It is worth noting that the Open
Networking Foundation (ONF) commercially supported the SDN effort and today re‐
mains its central standardization authority and marketing organization. Based on this
basic architecture just described, one can now imagine how quickly and easily it was to
devise a new networking protocol by simply implementing it within a data center on
commodity priced hardware. Even better, one could implement it in an elastic com‐
puting environment in a virtual machine.
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A slightly different view of SDN is what some in the industry refer to as software-driven
networks, as opposed to software-defined networks. This play on words is not meant to
completely confuse the reader, but instead highlight a difference in philosophy of ap‐
proaches. In the software-driven approach, one views OpenFlow and that architecture
as a distinct subset of functionality that is possible. Rather than viewing the network as
being comprised of logically centralized control planes with brainless network devices,
one views the world as more of a hybrid of the old and the new. More to the point, the
reality is that it is unrealistic to think that existing networks are going to be dismantled
wholesale to make way for a new world proposed by the ONF and software-defined
networks. It is also unrealistic to discard all of the advances in network technology that
exist today and are responsible for things like the Internet. Instead, there is more likely
a hybrid approach whereby some portion of networks are operated by a logically cen‐
tralized controller, while other parts would be run by the more traditional distributed
control plane. This would also imply that those two worlds would need to interwork
with each other.

It is interesting to observe that at least one of the major parts of what SDN and OpenFlow
proponents are trying to achieve is greater and more flexible network device pro‐
grammability. This does not necessarily have anything to do with the location of the
network control and data planes; however, it is concerned with how they are program‐
med. Do not forget that one of the motivations for creating SDN and OpenFlow was
the flexibility of how one could program a network device, not just where it is pro‐
grammed. If one observes what is happening in the SDN architecture just described,
both of those questions are solved. The question is whether or not the programmability
aspect is the most optimal choice.

To address this, individuals representing Juniper, Cisco, Level3, and other vendors and
service providers have recently spearheaded an effort around network programmability
called the Interface to the Routing System (I2RS). A number of folks from these sources
have contributed to several IETF drafts, including the primary requirements and frame‐
work drafts to which Alia Atlas, David Ward, and Tom have been primary contributors.
In the near future, at least a dozen drafts around this topic should appear online. Clearly
there is great interest in this effort. The basic idea around I2RS is to create a protocol
and components to act as a means of programming a network device’s routing infor‐
mation base (RIB) using a fast path protocol that allows for a quick cut-through of
provisioning operations in order to allow for real-time interaction with the RIB and the
RIB manager that controls it. Previously, the only access one had to the RIB was via the
device’s configuration system (in Juniper’s case, Netconf or SNMP).

The key to understanding I2RS is that it is most definitely not just another provisioning
protocol; that’s because there are a number of other key concepts that comprise an entire
solution to the overarching problem of speeding up the feedback loop between network
elements, network programming, state and statistical gathering, and post-processing
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analytics. Today, this loop is painfully slow. Those involved in I2RS believe the key to
the future of programmable networks lies within optimizing this loop.

To this end, I2RS provides varying levels of abstraction in terms of programmability of
network paths, policies, and port configuration, but in all cases has the advantage of
allowing for adult supervision of said programming as a means of checking the com‐
mands prior to committing them. For example, some protocols exist today for pro‐
gramming at the hardware abstraction layer (HAL), which is far too granular or detailed
for the network’s efficiency and in fact places undue burden on its operational systems.
Another example is providing operational support systems (OSS) applications quick
and optimal access to the RIB in order to quickly program changes and then witness
the results, only to be able to quickly reprogram in order to optimize the network’s
behavior. One key aspect around all of these examples is that the discourse between the
applications and the RIB occur via the RIB manager. This is important, as many oper‐
ators would like to preserve their operational and workflow investment in routing pro‐
tocol intelligence that exists in device operating systems such as Junos or IOS-XR while
leveraging this new and useful programmability paradigm to allow additional levels of
optimization in their networks.

I2RS also lends itself well to a growing desire to logically centralize routing and path
decisions and programmability. The protocol has requirements to run on a device or
outside of a device. In this way, distributed controller functionality is embraced in cases
where it is desired; however, in cases where more classic distributed control is desired,
we are able to support those as well.

Finally, another key subcomponent of I2RS is normalized and abstracted topology.
Defining a common and extensible object model will represent this topology. The ser‐
vice also allows for multiple abstractions of topological representation to be exposed. A
key aspect of this model is that nonrouters (or routing protocol speakers) can more
easily manipulate and change the RIB state going forward. Today, nonrouters have a
major difficulty getting at this information at best. Going forward, components of a
network management/OSS, analytics, or other applications that we cannot yet envision
will be able to interact quickly and efficiently with routing state and network topology.

So, to culminate these thoughts, it is appropriate that we define SDN for what we think
it is and will become:

Software-defined networks (SDN): an architectural approach that optimizes and sim‐
plifies network operations by more closely binding the interaction (i.e., provisioning,
messaging, and alarming) among applications and network services and devices, wheth‐
er they be real or virtualized. It often is achieved by employing a point of logically
centralized network control—which is often realized as an SDN controller—which then
orchestrates, mediates, and facilitates communication between applications wishing to
interact with network elements and network elements wishing to convey information
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to those applications. The controller then exposes and abstracts network functions and
operations via modern, application-friendly and bidirectional programmatic interfaces.

So, as you can see, software-defined, software-driven, and programmable networks
come with a rich and complex set of historical lineage, challenges, and a variety of
solutions to those problems. It is the success of the technologies that preceded software-
defined, software-driven, and programmable networks that makes advancing technol‐
ogy based on those things possible. The fact of the matter is that most of the world’s
networks—including the Internet—operate on the basis of IP, BGP, MPLS, and Ethernet.
Virtualization technology today is based on the technologies started by VMware years
ago and continues to be the basis on which it and other products are based. Network
attached storage enjoys a similarly rich history.

I2RS has a similar future ahead of it insofar as solving the problems of network, compute,
and storage virtualization as well as those of the programmability, accessibility, location,
and relocation of the applications that execute within these hyper virtualized environ‐
ments.

Although SDN controllers continue to rule the roost when it comes to press, many other
advances have taken place just in the time we have been writing this book. One very
interesting and bright one is the Open Daylight Project. Open Daylight’s mission is to
facilitate a community-led, industry-supported open source framework, including code
and architecture, to accelerate and advance a common, robust software-defined net‐
working platform. To this end, Open Daylight is hosted under the Linux Foundation’s
umbrella and will facilitate a truly game changing, and potentially field-leveling effort
around SDN controllers. This effort will also spur innovation where we think it matters
most in this space: applications. While we have seen many advances in controllers over
the past few years, controllers really represent the foundational infrastructure for SDN-
enabled applications. In that vein, the industry has struggled to design and develop
controllers over the past few years while mostly ignoring applications. We think that
SDN is really about operational optimization and efficiency at the end of the day, and
the best way to achieve this is through quickly checking off that infrastructure and
allowing the industry to focus on innovating in the application and device layers of the
SDN architecture.

This book focuses on the network aspects of software-defined, software-driven, and
programmable networks while giving sufficient coverage to the virtualization, location,
and programming of storage, network, and compute aspects of the equation. It is the
goal of this book to explore the details and motivations around the advances in network
technology that gave rise to and support of hyper virtualization of network, storage, and
computing resources that are now considered to be part of SDN.
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CHAPTER 2

Centralized and Distributed Control
and Data Planes

One of the tenets expressed early in the introduction of SDN is the potential advantage
in the separation of a network device’s control and data planes. This separation affords
a network operator certain advantages in terms of centralized or semi-centralized pro‐
grammatic control. It also has a potential economic advantage based on the ability to
consolidate in one or a few places what is often a considerably complex piece of software
to configure and control onto less expensive, so-called commodity hardware.

Introduction
The separation of the control and data planes is indeed one of the fundamental tenets
of SDN—and one of its more controversial, too. Although it’s not a new concept, the
contemporary way of thinking has some interesting twists on an old idea: how far away
the control plane can be located from the data plane, how many instances are needed
to exist to satisfy resiliency and high-availability requirements, and whether or not 100%
of the control plane can be, in fact, relocated further away than a few inches are all
intensely debated. The way we like to approach these ideas is to think of them as a
continuum of possibilities stretching between the simplest, being the canonical fully
distributed control plane, to the semi- or logically centralized control plane, to finally
the strictly centralized control plane. Figure 2-1 illustrates the spectrum of options
available to the network operator, as well as some of the pros and cons of each approach.
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Figure 2-1. Spectrum of control and data plane distribution options

Evolution versus Revolution
At one end of the spectrum of answers to the question of where to put the control plane
lies the revolutionary proponents, who propose a clean slate approach in which the
control plane of a network is completely centralized. In most cases, this extreme ap‐
proach has been tempered to be, in reality, a logically centralized approach due to either
scale or high availability requirements that make a strictly centralized approach difficult.
In this model, no control plane functions effectively exist at a device; instead, a device
is a dumb (albeit fast) switching device under the total control of the remotely located,
centralized control plane. We shall explore this in detail later in the chapter and show
why it generally applies best to newly deployed networks rather than existing ones.

Toward the middle of the spectrum, the evolutionary proponents see domains within
the general definition of networks in which a centralized control paradigm provides
some new capabilities, but does not replace every capability nor does it completely re‐
move the control plane from the device. Instead, this paradigm typically works in con‐
junction with a distributed control plane in some fashion, meaning that the device
retains some classical control plane functions (e.g., ARP processing or MAC address
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1. As part of its evolution, the Open Networking Foundation has alternately bound the definition of SDN to
OpenFlow tightly (i.e., OpenFlow = SDN) and loosely (i.e., OpenFlow is a critical component of SDN).
Regardless, it’s undeniable that the existence of OpenFlow and the active marketing of the ONF triggered the
market/public discussion and interest in SDN.

2. The management plane is responsible for element configuration that may affect local forwarding decisions
(forwarding features) like access control lists (ACLs) or policy-based routing (PBR).

learning), while allowing a centralized controller to manipulate other areas of func‐
tionality more convenient for that operational paradigm. This view is often character‐
ized as the hybrid operation or as part of the underlay/overlay concept in which the
distributed control plane provides the underlay and the centralized control plane pro‐
vides a logical overlay that utilizes the underlay as a network transport.

Finally, at the other end of the spectrum is the classic use of control planes: completely
distributed. In this model, every device runs a complete instance of a control plane in
addition to at least one data plane. Also in this model, each independent control plane
must cooperate with the other control planes in order to support a cohesive and op‐
erational network. The approach obviously presents nothing new and is neither revo‐
lutionary nor evolutionary.

This chapter will not present the reader with a comprehensive discussion of control/
data plane design or development, as this could be the topic of an entire book. Therefore,
we will discuss general concepts as they pertain to the SDN space and refer the reader
to other references, when possible, for further detailed investigation.1 Instead, we will
explore each of the places on the spectrum of control plane distribution and operation
that were just introduced. These will include some past and present examples of cen‐
tralization of control, hybrid, and fully distributed operation.

What Do They Do?
Let’s first discuss the fundamental components and behaviors of control and data planes,
why they differ, and how they might be implemented.

The Control Plane
At a very high level, the control plane establishes the local data set used to create the
forwarding table entries, which are in turn used by the data plane to forward traffic
between ingress and egress ports on a device.2 The data set used to store the network
topology is called the routing information base (RIB). The RIB is often kept consistent
(i.e., loop-free) through the exchange of information between other instances of control
planes within the network. Forwarding table entries are commonly called the forward‐
ing information base (FIB) and are often mirrored between the control and data planes
of a typical device. The FIB is programmed once the RIB is deemed consistent and stable.
To perform this task, the control entity/program has to develop a view of the network
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topology that satisfies certain constraints. This view of the network can be programmed
manually, learned through observation, or built from pieces of information gathered
through discourse with other instances of control planes, which can be through the use
of one or many routing protocols, manual programming, or a combination of both.

The mechanics of the control and data planes is demonstrated in Figure 2-2, which
represents a network of interconnected switches. At the top of the figure, a network of
switches is shown, with an expansion of the details of the control and data planes of two
of those switches (noted as A and B). In the figure, packets are received by switch A on
the leftmost control plane and ultimately forwarded to switch B on the righthand side
of the figure. Inside each expansion, note that the control and data planes are separated,
with the control plane executing on its own processor/card and the data plane executing
on a separate one. Both are contained within a single chassis. We will discuss this and
other variations on this theme of physical location of the control and data planes later
in the chapter. In the figure, packets are received on the input ports of the line card
where the data plane resides. If, for example, a packet is received that comes from an
unknown MAC address, it is punted or redirected (4) to the control plane of the device,
where it is learned, processed, and later forwarded onward. This same treatment is given
to control traffic such as routing protocol messages (e.g., OSPF link-state advertise‐
ments). Once a packet has been delivered to the control plane, the information con‐
tained therein is processed and possibly results in an alteration of the RIB as well as the
transmission of additional messages to its peers, alerting them of this update (i.e., a new
route is learned). When the RIB becomes stable, the FIB is updated in both the control
plane and the data plane. Subsequently, forwarding will be updated and reflect these
changes. However, in this case, because the packet received was one of an unlearned
MAC address, the control plane returns the packet (C) to the data plane (2), which
forwards the packet accordingly (3). If additional FIB programming is needed, this also
takes place in the (C) step, which would be the case for now the MAC addresses source
has been learned. The same algorithm for packet processing happens in the next switch
to the right.

The history of the Internet maps roughly to the evolution of control schemes for man‐
aging reachability information, protocols for the distribution of reachability informa‐
tion, and the algorithmic generation of optimized paths in the face of several challenges.
In the case of the latter, this includes an increasing growth of the information base used
(i.e., route table size growth) and how to manage it. Not doing so could result in the
possibility of a great deal of instability in the physical network. This in turn may lead to
high rates of change in the network or even nonoperation. Another challenge to over‐
come as the size of routing information grows is the diffusion of responsibility for
advertising reachability to parts of the destination/target data, not only between local
instances of the data plane but also across administrative boundaries.
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Figure 2-2. Control and data planes of a typical network

In reality, the control plane for the Internet that was just discussed is some combination
of layer 2 or layer 3 control planes. As such, it should be no surprise then that the same
progression and evolution has taken place for both layer 2 and layer 3 networks and the
protocols that made up these control planes. In fact, the progression of the Internet
happened because these protocols evolved both in terms of functionality and hardware
vendors learned how to implement them in highly scalable and highly available ways.

A layer 2 control plane focuses on hardware or physical layer addresses such as IEEE
MAC addresses. A layer 3 control plane is built to facilitate network layer addresses such
as those of the IP protocol. In a layer 2 network, the behaviors around learning MAC
addresses, the mechanisms used to guarantee an acyclic graph (familiar to most readers
through the Spanning Tree Protocol), and flooding of BUM (broadcast, unicast un‐
known, and multicast) traffic create their own scalability challenges and also reveal their
scalability limitations. There have been several iterations or generations of
standards-based layer 2 control protocols whose goals were to address these and other
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issues. Most notably, these included SPB/802.1aq from the IEEE and TRILL from the
IETF.

As a generalization, though, layer 2 and layer 3 scaling concerns and their resulting
control plane designs eventually merge or hybridize because layer 2 networks ultimately
do not scale well due to the large numbers of end hosts. At the heart of these issues is
dealing with end hosts moving between networks, resulting in a massive churn of for‐
warding tables—and having to update them quickly enough to not disrupt traffic flow.
In a layer 2 network, forwarding focuses on the reachability of MAC addresses. Thus,
layer 2 networks primarily deal with the storage of MAC addresses for forwarding pur‐
poses. Since the MAC addresses of hosts can be enormous in a large enterprise network,
the management of these addresses is difficult. Worse, imagine managing all of the MAC
addresses across multiple enterprises or the Internet!

In a layer 3 network, forwarding focuses on the reachability of network addresses. Layer
3 network reachability information primarily concerns itself with the reachability of a
destination IP prefix. This includes network prefixes across a number of address families
for both unicast and multicast. In all modern cases, layer 3 networking is used to segment
or stitch together layer 2 domains in order to overcome layer 2 scale problems. Specif‐
ically, layer 2 bridges that represent some sets of IP subnetworks are typically connected
together with a layer 3 router. Layer 3 routers are connected together to form larger
networks—or really different subnetwork address ranges. Larger networks connect to
other networks via gateway routers that often specialize in simply interconnecting large
networks. However, in all of these cases, the router routes traffic between networks at
layer 3 and will only forward packets at layer 2 when it knows the packet has arrived at
the final destination layer 3 network that must then be delivered to a specific host.

Some notable blurring of these lines occurs with the Multiprotocol Label Switching
(MPLS) protocol, the Ethernet Virtual Private Network (EVPN) protocol, and the Lo‐
cator/ID Separation Protocol (LISP). The MPLS protocol—really a suite of protocols—
was formed on the basis of combining the best parts of layer 2 forwarding (or switching)
with the best parts of layer 3 IP routing to form a technology that shares the extremely
fast-packet forwarding that ATM invented with the very flexible and complex path
signaling techniques adopted from the IP world. The EVPN protocol is an attempt to
solve the layer 2 networking scale problems that were just described by effectively tun‐
neling distant layer 2 bridges together over an MPLS (or GRE) infrastructure—only
then is layer 2 addressing and reachability information exchanged over these tunnels
and thus does not contaminate (or affect) the scale of the underlying layer 3 networks.
Reachability information between distant bridges is exchanged as data inside a new BGP
address family, again not contaminating the underlying network. There are also other
optimizations that limit the amount of layer 2 addresses that are exchanged over the
tunnels, again optimizing the level of interaction between bridges. This is a design that
minimizes the need for broadcast and multicast. The other hybrid worth mentioning is
LISP (see RFC 4984). At its heart, LISP attempts to solve some of the shortcomings of
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the general distributed control plane model as applied to multihoming, adding new
addressing domains and separating the site address from the provider in a new map
and encapsulation control and forwarding protocol.

At a slightly lower level, there are adjunct control processes particular to certain network
types that are used to augment the knowledge of the greater control plane. The services
provided by these processes include verification/notification of link availability or qual‐
ity information, neighbor discovery, and address resolution.

Because some of these services have very tight performance loops (for short event de‐
tection times), they are almost invariably local to the data plane (e.g., OAM)—regardless
of the strategy chosen for the control plane. This is depicted in Figure 2-3 by showing
the various routing protocols as well as RIB-to-FIB control that comprises the heart of
the control plane. Note that we do not stipulate where the control and data planes reside,
only that the data plane resides on the line card (shown in Figure 2-3 in the LC box),
and the control plane is situated on the route processor (denoted by the RP box).

Figure 2-3. Control and data planes of a typical network device
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3. Some implementations do additional sanity checks beyond proper sizing, alignment, encapsulation rule ad‐
herence, and checksum verification. In particular, once a datagram “type” has been identified, additional
“bogon” rules may be applied to check for specific violations for the type.

4. It is not uncommon for hardware platforms to have an “overflow” table design where failed lookups or lookups
requiring more information in the “fast path”/hardware (normally due to resource constraints in either
number of entries or width of entry) are subsequently reattempted against a table maintained in software—
a “slow” path lookup.

Nor is it uncommon to combine both commodity silicon and ASICs to perform layer 2-based functions in
front of layer 3-based functions—without having consolidated them into a single chip.

Data Plane
The data plane handles incoming datagrams (on the wire, fiber, or in wireless media)
through a series of link-level operations that collect the datagram and perform basic
sanity checks. A well-formed (i.e., correct) datagram3 is processed in the data plane by
performing lookups in the FIB table (or tables, in some implementations) that are pro‐
grammed earlier by the control plane. This is sometimes referred to as the fast path for
packet processing because it needs no further interrogation other than identifying the
packet’s destination using the preprogrammed FIB. The one exception to this processing
is when packets cannot be matched to those rules, such as when an unknown destination
is detected, and these packets are sent to the route processor where the control plane
can further process them using the RIB. It is important to understand that FIB tables
could reside in a number of forwarding targets—software, hardware-accelerated
software (GPU/CPU, as exemplified by Intel or ARM), commodity silicon (NPU, as
exemplified by Broadcom, Intel, or Marvell, in the Ethernet switch market), FPGA and
specialized silicon (ASICs like the Juniper Trio), or any combination4—depending on
the network element design.

The software path in this exposition is exemplified by CPU-driven forwarding of the
modern dedicated network element (e.g., router or switch), which trades off a processor
intensive lookup (whether this is in the kernel or user space is a vendor-specific design
decision bound by the characteristics and infrastructure of the host operating system)
for the seemingly limitless table storage of processor memory. Its hypervisor-based
switch or bridge counterpart of the modern compute environment has many of the
optimizations (and some of the limitations) of hardware forwarding models.

Historically, lookups in hardware tables have proven to result in much higher packet
forwarding performance and therefore have dominated network element designs, par‐
ticularly for higher bandwidth network elements. However, recent advances in the I/O
processing of generic processors, spurred on by the growth and innovation in cloud
computing, are giving purpose-built designs, particularly in the mid-to-low perfor‐
mance ranges, quite a run for the money.
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5. There are many (cascading) factors in ASIC design in particular that ultimately tie into yield/cost from the
process and die size and flowing down into logic placement/routing, timing and clock frequency (which may
have bearing on the eventual wear of parts), and table sharing—in addition to the power, thermal, and size
considerations.

6. There are many examples here, including the aforementioned OAM, BFD, RSTP, and LACP.

The differences in hardware forwarding designs are spread across a variety of factors,
including (board and rack) space, budget, power utilization, and throughput5 target
requirements. These can lead to differences in the type (speed, width, size, and location)
of memory as well as a budget of operation (number, sequence, or type of operations
performed on the packet) to maintain forwarding at line rate (i.e., close to the maximum
signaled or theoretical throughput for an interface) for a specific target packet size (or
blend). Ultimately, this leads to differences in forwarding feature support and forward‐
ing scale (e.g., number of forwarding entries, number of tables) among the designs.

The typical actions resulting from the data plane forwarding lookup are forward (and
in special cases such as multicast, replicate), drop, re-mark, count, and queue. Some of
these actions may be combined or chained together. In some cases, the forward decision
returns a local port, indicating the traffic is destined for a locally running process such
as OSPF or BGP6. These datagrams take what is referred to as the punt path whereby
they leave the hardware-forwarding path and are forwarded to the route processor using
an internal communications channel. This path is generally a relatively low-throughput
path, as it is not designed for high-throughput packet forwarding of normal traffic;
however, some designs simply add an additional path to the internal switching fabric
for this purpose, which can result in near-line rate forwarding within the box.

In addition to the forwarding decision, the data plane may implement some small serv‐
ices/features commonly referred to as forwarding features (exemplified by Access Con‐
trol Lists and QoS/Policy). In some systems, these features use their own discrete tables,
while others perform as extensions to the forwarding tables (increasing entry width).
Additionally, different designs can implement different features and forwarding oper‐
ation order (Figure 2-4). Some ordering may make some feature operations exclusive
of others.

With these features, you can (to a small degree) locally alter or preempt the outcome of
the forwarding lookup. For example:

• An access control list entry may specify a drop action for a specific matching flow
(note that in the ACL, a wider set of parameters may be involved in the forwarding
decision). In its absence, there may have been a legitimate forwarding entry and
thus the packet would NOT be dropped.

• A QOS policy can ultimately map a flow to a queue on egress or remark its
TOS/COS to normalize service with policies across the network. And, like the ACL,

What Do They Do? | 17

http://www.it-ebooks.info/


it may mark the packet to be dropped (shaped) regardless of the existing forwarding
entry for the destination/flow.

Figure 2-4. Generic example of ingress feature application on a traditional router/
switch.

These forwarding features overlap the definition of services in Chapter 7. Arguably, a
data plane and control plane component of these services exists, and their definition
seems to diverge cleanly when we begin to discuss session management, proxy, and
large-scale transforms of the datagram header. As part of the forwarding operation, the
data plane elements have to do some level of datagram header rewrite.

Moving Information Between Planes
The internal function of larger, multislot/multicard (chassis-based) distributed for‐
warding systems of today mimic some of the behaviors of the logically centralized but
physically distributed control mechanisms of SDN. Particularly those aspects of the
distribution of tables and their instantiation in hardware are of interest here. An ex‐
amination of the inner workings of a typical distributed switch reveals a number of
functions and behaviors that mimic those of an externalized control plane. For example,
in systems where the control plane resides on an independent processor/line card and
data planes exist on other, independent line cards, certain behaviors around the com‐
munication between these elements must exist for the system to be resilient and fault
tolerant. It is worth investigating whether or not all of these are needed if the control
plane is removed from the chassis and relocated further away (i.e., logically or strictly
centralized).
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7. A black hole occurs when there is a discrepancy between the control-process-generated version of the for‐
warding table(s), which are normally maintained in DRAM in most equipment (commonly referred to as a
software-based forwarding table) and either the software-based tables on peer (or slave) processors in the
same system or the hardware-based forwarding entries created from those software tables. The latter will
normally require some sort of transform or “packing” when written to specialized hardware associated mem‐
ories and can be exposed by driver-level errors in the transform or write as well as soft errors in the memories
themselves that can lead to incomplete or incorrect entries (and ultimately, a drop of the datagram). Some
“black hole” problems can also result from inefficient/unsynchronized table updating algorithms on systems
that create the forwarding entries by combining information from separate tables (e.g., when the hardware
address of a next hop to a destination is not populated in an adjacency table but a route using that next hop
populates the route table, leading to an “unresolvable” forwarding entry).

Let’s first begin with the concept of basic packet forwarding. When the data plane is
instructed by the control plane to forward packets, does the data plane listen? And does
it listen for each and every packet it receives? More specifically, are there ways in which
traffic can be black holed7 (i.e., dropped without any indication in hardware-based for‐
warding systems that are addressed in different vendor’s implementations)? This is a
question that one should ask that is independent of whether or not the control entity/
program is centralized, semi-centralized, or otherwise synchronized with other ele‐
ments in a distributed control network. In these systems, mechanisms for detecting
forwarding table distribution errors can be embedded in the data (e.g., table versioning)
or in the transfer mechanism (e.g., signing the table with some form of hash or cookie
generated from its contents). Such mechanisms ensure that the distributed software
versions of the table are synchronized and correct once programmed. Similarly, verifi‐
cation routines between the software version of the table and the hardware version are
implemented in the memory driver software (specific to the forwarding hardware).

Some vendors have implemented routines to verify hardware entries post facto—after
the control plane programs the data plane—checking for soft errors in the forwarding
chip and ancillary memories. In these cases, there are associated routines to mark bad
blocks, move entries, and references. In general, these hardware verification routines
are expensive, so they are often implemented as a background (a.k.a. scavenger) pro‐
cesses. To this end, both the transfer and memory write routines are also optimized to
reduce transaction overhead, commonly by batching and bulking techniques.

Some multislot/multicard systems do two-stage lookups wherein the first stage at in‐
gress simply identifies the outgoing slot/card on which a secondary lookup is performed.
Depending on how it’s implemented, two-stage lookups can enable an optimization that
allows a phenomenon called localization to reduce the egress FIB size. In these cases,
scenarios around two-stage asynchronous loss may occur that require some attention
and are in fact difficult to detect until they fail. These have relevance to SDN forwarding
control.
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Figure 2-5. Two-stage asynchronous loss

The left side of Figure 2-5 shows a multislot router/switch that does a two-stage lookup.
When link A-B comes up, the resulting FIB ingress lookup on card 1 changes from card
3 to card 2. If the update to card 2 happens after 1 and 3, then the secondary lookup (on
egress) will fail. Similarly, in an SDN environment (shown in the cloud on the right
side), if the tunnel connecting A and B changes from interface 3 (respectively) to in‐
terface 2 on these systems (due to an administrative or network event)—then the map‐
ping of flows from 1–3 to 1–2 on these elements has to be synchronized by the appli‐
cation on the SDN controller (CP).

These mitigation techniques/optimizations are mentioned for the purpose of further
discussions when we talk about consistency in the context of centralizing the control
plane.

Why Can Separation Be Important?
The separation of the control and data planes is not a new concept. For example, any
multislot router/switch built in the last 10 years or so has its control plane (i.e., its brain)
executing on a dedicated processor/card (often two for redundancy) and the switching
functions of the data plane executing independently on one or more line cards, each of
which has a dedicated processor and/or packet processor. Figure 2-6 illustrates this by
showing the route processor engine (denoted as the route processor box in Figure 2-6).

In Figure 2-6, the data plane is implemented in the lower box, which would be a separate
line card with dedicated port processing ASICs connected to the ingress and egress ports
on the line card (i.e., Ethernet interfaces). Under normal operation, the ports in
Figure 2-6 have forwarding tables that dictate how they process inbound-to-outbound
interface switching. These tables are populated and managed by the route processor’s
CPU/control plane program or programs. When control plane messages or unknown
packets are received on these interfaces, they are generally pushed up to the route pro‐
cessor for further processing. Think of the route processor and line cards as being
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connected over a small but high-speed, internal network because in reality this is in fact
how modern switches are built.

Figure 2-6. Control and data plane example implementation

In addition to this, some protocols are actually designed with this architecture in mind
to optimize and enhance their behavior. For example, the Multiprotocol Label Switching
(MPLS) protocol carries control traffic using the IP protocol suite, which ideally would
be implemented on a dedicated route processor engine running a general-purpose CPU,
while leveraging a fixed label-based switching paradigm that is best suited to more
simplified yet far higher-performance packet processor engine on a different line card.

Until the discussion of SDN and its separation of the control and data planes at distances
greater than say a meter (i.e., within a single chassis or a directly tethered multichassis
system), the control planes and data planes described in the previous section were dis‐
tributed but built and managed as a tightly integrated (and relatively closely located)
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8. The term “fabric” is used generically, as there are numerous technologies available to interconnect the blades/
boards/cards of a multiboard network element.

package of hardware and software. In addition to those components and a lot of internal
infrastructure that was largely hidden from the external observer of those systems, the
resulting packaging of these components led to the proliferation of purpose-driven
network elements. These elements were often built on the same hardware family base
and varied in throughput efficiency (and complexity) based on the emphasis on balance
between service, management, control, and data planes. The interdependencies created
by this very tight coupling of planes create problems (motivation) that revolve around
innovation, stability, and scale that ultimately leads to high-performance in all of these
areas. However, these designs suffer from high cost due to their enormous complexity,
which is one motivational angle for SDN. Let’s investigate each of these components
because the discussion should highlight each of these issues, or benefits, depending on
your perspective.
Scale matters

The scalability of a routing and switching system can take place in myriad ways, coupled
with issues that might range from raw packet forwarding performance to power con‐
sumption, just to name a few. Ultimately, these scaling issues revolve around a number
of trade-offs that tug between cost and performance:

• The service cards are limited to a certain amount of subscriber/flow/service state
that they can support for a particular generation of the card. Further, because service
cards (particularly those that use special embedded CPUs) have to use a vendor-
specific system interconnection and switching fabric,8 there is a significant lag be‐
tween the availability of a new family of processors (or new processors within the
family currently employed on the card) and a new service card that takes advantage
of that innovation. The bottom line here is that it takes considerable time to do
additional custom design. This unfortunately leads to added system cost.

• Forwarding cards could support a certain scale of forwarding entries for a particular
generation of forwarding chip design, but some of these cards have separate, local
slave or peer processors to the control processor on the control board, and these in
turn have local processing limitations of their own—for example, running flow
sampling on the forwarding card CPU in some designs could drive the local CPU
utilization up and consume the CPU processing budget for the system.
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9. Depending on the type of device (router or switch), this would be more commonly referred to as a route
processor or supervisor (different vendors have different names). On a device that was not based on a multislot
chassis design, this could be just a control processor on a daughter card (or even integrated into a single board
design).

10. Operating system design for network elements has evolved a view that management processes can be de‐
coupled from but still provide services to the control processes (routing/forwarding), potentially on a pub-
sub basis. This isolates tasks like inventory management, environmental management, lower-level logging,
alarm handling, and other chassis management tasks from the control process while keeping them aware of
forwarding related events (like the restart of one of the forwarding cards).

• The control card9 memories can handle a certain route scale or other state and have
processing limitations based on the generation of the CPU complex on the card,
but this memory is also used to store control protocol state and management such
as BFD or SNMP. Another fundamental limitation to these designs is that that this
memory is, generally speaking, the fastest money can buy and thus the most ex‐
pensive.

Evolution

So in the past, the network operator had to follow a hardware upgrade path to solve the
scale or processing related problems of the control plane. While doing this, the operator
had to keep an eye on the forwarding card scale as well as the price-to-performance
numbers to pick just the right time to participate in an upgrade. Though it is more
pertinent to the separation of the control plane discussion, in the highly specialized
platform solutions, they might have to balance the ratio of service cards to forwarding
cards, which could significantly reduce the overall forwarding potential of the device
(giving up forwarding slots for service slots). One way equipment vendors tried to help
this situation was by separating the control and data planes apart so that they could
evolve and scale independently—or at least much better than if they were combined.

The SDN-driven twist on the typical equipment evolution is that while there may still
exist a cycle of growth/scale and upgrade in the control (and service) plane to accom‐
modate scale, this is much easier to pursue in a COTS compute environment. This is
particularly true given the innovations in this environment being driven by cloud com‐
puting. Further, dissecting the control plane from the management processes further
provides some level of scale impact isolation10 by running those user-level processes on
COTS hardware within the router/switch, or even remotely.

Hardware forwarding components will still follow an upgrade cycle of their own to deal
with forwarding scale regardless of the control plane (i.e., route processor) configura‐
tion. Upgrades due to bandwidth/throughput demands of a forwarding platform are
part of a normal aggregation scheme, where great parts of the lower speed forwarding
components are typically repositioned at layers closer to the edges of the network (this
is potentially a more likely scenario as their function becomes more generic). Figure 2-7
illustrates this.
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Figure 2-7. Separating the integrated management, control, service, and forwarding
planes so that they can scale independently

Cost

For such an attention-getting word, there is less to say about cost than other motivators.
Cost has capital (CAPEX) and operational (OPEX) components. Cost is driven by its
companions: scale (a CAPEX driver), complexity, and stability (OPEX drivers). Let’s
start with the obvious statement about CAPEX—for many customers (particularly
service providers or large enterprises with data center operations), the cost of processing
power is very cheap on generic compute (COTS) in comparison to the cost of processing
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11. While the expectation is for a loose coupling of components and open standards enabling a high degree of
confidence in interoperability/substitutability, there will probably be some combination compatibility man‐
agement for new features and support that were more or less guaranteed in the integrated packaging.

in their network elements. The integration costs associated with the integrated service
and control cards drive some of this cost differential. Admittedly, some of this cost
differential is also driven by a margin expectation of the vendor for the operating system
(those control, management, and service processes), which are not always licensed sep‐
arately. It’s a way to recover their investment in their intellectual property and fund
ongoing maintenance and development.

This is a subtle point for the conversation going forward. While SDN will definitely
reduce the hardware integration component of this cost, the component that is the
vendor’s intellectual property (control or service) may be repriced to what the vendor
perceives as its true value (to be tested by the market). Additionally, an integration cost
will remain in the software components.11

Innovation

An argument can be made that there are innovation benefits from the separation of the
control and data planes (the argument is stronger when considering the separation of
the service plane as well). Theoretically, separation can benefit the consumer by chang‐
ing the software release model in a way that enables innovations in either plane to
proceed independently from each other (as compared to the current model in which
innovations in either plane are gated by the build cycle of the multipurpose integrated
monolith).

More relevant to the control/data separation would be the ability to support the intro‐
duction of new hardware in the forwarding plane without having to iterate the control
plane (for example, the physical handling of the device would be innovation in the data
plane component via new drivers).
Stability

The truth is that when we talk about the separation of these planes in an SDN context,
there will probably be some subcomponents of the control plane that cannot be cen‐
tralized and that there will be a local agent (perhaps more than one) that accepts for‐
warding modifications and/or aggregates management information back to the central
control point. In spite of these realities, by separating the control and data planes, the
forwarding elements may become more stable by virtue of having a smaller and less
volatile codebase. The premise that a smaller codebase is generally more stable is fairly
common these days. For example, a related (and popular) SDN benefit claim comes
from the clean slate proposition, which posits that the gradual development of features
in areas like Multiprotocol Label Switching (MPLS) followed a meandering path of
feature upgrades that naturally bloats the code bases of existing implementations. This
bloat leads to implementations that are overly complex and ultimately fragile. The claim
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12. The Stanford document reference is available online. Although this study advocates aspects of SDN outside
the discussion in this chapter, part of its root premise is that smaller codebases are generally more stable.

is that the implementation of the same functionality using centralized label distribution
to emulate the functionality of the distributed LDP or RSVP and a centralized knowledge
of network topology could be done with a codebase at least an order of magnitude
smaller than currently available commercial codebases.12 The natural claim is that in a
highly prescriptive and centralized control system, the network behavior can approach
that of completely static forwarding, which is arguably stable.
Complexity and its resulting fragility

The question of how many control planes and where these control planes are located
directly impacts the scale, performance, and resiliency—or lack thereof, which we refer
to as fragility—of a network. Specifically, network operators plan on deploying enough
devices within a network to handle some percentage of peak demand. When the uti‐
lization approaches this, new devices must be deployed to satisfy the demand. In tra‐
ditional routing and switching systems, it’s important to understand how much localized
forwarding throughput demand can be satisfied without increasing the number of
managed devices and their resulting control protocol entities in the network. Note from
our discussion that the general paradigm of switch and router design is to use a firmly
distributed control plane model, and that generally means that for each device deployed,
a control plane instance will be brought up to control the data plane within that chassis.
The question then is this: how does this additional control plane impact the scale of the
overall network control plane for such things as network convergence (i.e., the time it
takes for the entirety of running control planes to achieve and agreed upon a loop-free
state of the network)? The answer is that it does impact the resiliency and performance
of the overall system, and the greater the number of control planes, the potential at least
exists for additional fragility in the system. It does also increase the anti-fragility of the
system if tuned properly, however, in that it creates a system that eventually becomes
consistent regardless of the conditions. Simply put, the number of protocol speakers in
distributed or eventual consistency control models can create management and oper‐
ations complexity.

Initially, an effort to curtail the growth of control planes was addressed by creating small
clusters of systems from stand-alone elements. Each element of the cluster was bonded
by a common inter-chassis data and control fabric that was commonly implemented as
a small, dedicated switched Ethernet network. The multichassis system took this con‐
cept a step further by providing an interconnecting fabric between the shelves and thus
behaved as a single logical system, controlled by a single control plane. Connectivity
between the shelves was, however, implemented through external (network) ports, and
the centralized control plane uses multiple virtual control plane instances—one per
shelf. It was also managed as such in that it revealed a single IP address to the network
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operator, giving them one logical entity to manage. Figure 2-8 demonstrates both
approaches.

Figure 2-8. The cluster and multichassis system designs

In Figure 2-8’s cluster and multichassis system designs, an external control plane con‐
structed of an interconnecting Control Ethernet network (implemented via redundant
Ethernet switches) allows the flow of external control protocol packets forwarding table
updates and infrastructure management messaging between processors on the line card
(port) shelves and the control processors (e.g., route engine).

Two strategies have evolved to address the control of these systems: distributing pro‐
cessing across the control points in the chassis (process placement) to more fully utilize
the processing power (and spread the scale), or centralizing the processing on an
outboard control system (that is wired into the control fabric of the system). The latter
strategy potentially moves the scale point to one more modular and technologically

What Do They Do? | 27

http://www.it-ebooks.info/


faster moving device (these are commonly a packaged switch and compute device,
without a requirement for a specific form or carrier card fabrication or a proprietary
fabric interface).

You should note that this latter view of multichassis or cluster systems approaches some
of the characteristics of SDN (centralization and more independent scaling of the con‐
trol plane), albeit without solving the programmability/flexibility problems of the
control plane.

There is also the potential to reduce the number and interaction of protocols required
to create forwarding state in the elements. Figure 2-9 shows the process interaction in
an IGP/BGP/MPLS network to learn/advertise prefixes and label bindings to populate
forwarding in the data plane.

Figure 2-9. Process interaction in an IGP/BGP/MPLS network

Distributed Control Planes
The control paradigm that has evolved with the Internet, which is our ultimate network
scale problem to date, is a distributed, eventual consensus model. In this model, the
individual elements or their proxies participate together to distribute reachability in‐
formation in order to develop a localized view of a consistent, loop-free network. We
label the model as one of eventual consensus because of the propagation delays of
reachability updates, inherent in the distributed control plane model in anything beyond
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a small home network, forms a fairly complex network graph. By design, the model is
of intermittent nonsynchronization that could lead to less optimal forwarding paths but
(hopefully) avoiding or limiting transient cycles otherwise known as micro-loops in the
overall path. Figure 2-10 illustrates this concept.

Figure 2-10. Eventual consistency of routing state

Observe the network on the left represented by the cloud and three nodes (A, B, and
C). At time = 0, the network state is inconsistent and exhibiting a looping network. In
this case, packets could cycle if transmitted, as the forwarding at nodes A and B are
allowing traffic to flow between them. However, at time = 1, represented by the cloud
on the right of the figure, the link between nodes A and B is broken. This represents the
eventual consistency concept whereby the network, for a fraction of a second in time,
could remain unstable until the routing message updates are exchanged between the
nodes in the network.

IP and MPLS
IP and MPLS forwarding are examples of a distributed control model. In these for‐
warding paradigms, routes and reachability information is exchanged that later results
in data plane paths being programmed to realize those paths. Books have already been
written on the operation of IGPs, as well as numerous, freely available IETF drafts and
standards, so we will not go into the specifics of these models. However, a hasty gener‐
alization will allow a discussion of some of the relative merits/limitations of this
particular model and hence a better understanding of some of the SDN concepts around
distribution of the control and data planes.
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13. BGP has evolved into a very extensible database and database exchange protocol.

Creating the IP Underlay
The foundation of the current IP control plane paradigm is to use an IGP. This normally
is in the form of a link-state protocol such as OSPF or ISIS. The IGP is used to establish
reachability between a connected, acyclic graph of IP forwarding elements.

Once configured, IGP protocols establish relationships with appropriately configured
neighbors and manage control protocol sessions that exchange reachability information
(i.e., NLRI or route state). As awareness of infrastructure security has evolved, so have
the built-in protections for the establishing of neighbor relationships and the acceptance
of protocol related data.

The network elements participating in this exchange store the accumulated advertise‐
ments from other nodes in a state database (e.g., OSPF database) and run a shortest path
algorithm against that data to establish a self-centered reachability graph of best paths
to destinations. These best paths are contributed to the RIB (along with contributions
from other protocols, if they are running on the same element).

The loss/gain of these relationships (neighbors) or the loss/gain of reachability on links
on which the element has no neighbor relationship but does have a bound reachability
advertisement are network events.

These events use a distributed flooding algorithm within the protocol definition to
propagate, such that all elements speaking a particular control protocol in the domain
that remain connected to each other (directly or indirectly) eventually see and process
the event.

Scale of the control plane state in such networks is addressed both in physical and logical
design, using the tools of recursion, summarization, route filtering, and compartmen‐
talization (physical/logical). To handle the general scale problem arising from the num‐
ber of IGP neighbors supported—the number of events that can be processed, the size
of the link state database or other state structure and/or other related entities—the el‐
ements can be divided physically/logically into areas or other IGP hierarchies. At area
boundaries, the operator has the controls to summarize (if possible) reachability infor‐
mation from other areas or leak specific information across the area borders.

To advertise reachability across administrative boundaries or to carry reachability data
sets13—notably, different address families that represent further abstractions like virtual
private networks across a network without carrying it in the IGP—the IP control para‐
digm typically uses the border gateway protocol (BGP). Like the IGP component of the
control plane, a peering relationship between these neighbors, akin to that of the IGP,
results in an exchange of all or any subsets of the neighbor’s BGP data store. This occurs
because reachability information is partitioned into various address families.
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14. There is RFC 1104 Models of Policy Based Routing.

This information is made more accessible and scalable in both the control and data
plane through recursion. Recursion allows the network control plane to distribute in‐
formation with different attributes specific to different protocols that link through a
series of shared keys, as shown in Figure 2-11. For example, this optimization allows
the representation of a large number of BGP NLRI through a single IP destination
address in the IGP data set (or a set if the operator uses control plane protocol features
that allow multiple best paths to the destination, and/or has multiple equal cost paths
to the advertising entity). The BGP information becomes information associated with
leaves off our acyclic IGP graph when the control plane builds the entries for the data
plane (FIB).

Figure 2-11. Route recursion

In the data plane, this recursion ultimately resolves the BGP prefix via the IGP “next
hop” to a pointer to a fully qualified adjacency for the layer 2 components of a forwarding
entry. This forwarding entry ultimately represents a destination MAC entry for the next
router/switch interface in the path.

At these external boundaries, the operator has some additional control over summari‐
zation and advertisement of control state through the use of various policy tools. In the
IP model, a certain amount of additional, localized control over which data in the control
plane data set is selected for forwarding in the data plane is enabled through both
standardized and proprietary14 behaviors that allow local policies to govern the prefer‐
ence of learned reachability.

For example, these tools can indirectly affect the preferences of neighbors for a particular
route state through local redistribution of a static route entry into a dynamic routing
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15. Arguably, this treatment is more specifically applicable to BGP.

protocol or by manipulating attributes of a prefix before re-advertisement.15 A non-
redistributed static route can affect local decisions if there is no existing route in the
RIB of greater length or higher administrative preference. Preference for a prefix in each
protocol table is controlled by the rules of that protocol and in the RIB by administrative
preference between the different protocols’ tables, but ultimately forwarding decisions
in the FIB will be made on a longest match of a destination prefix. Admittedly, the
combination of IGP/BGP recursion and the use of policy tools can become complex,
but this is how control planes are administered in the real world.

Like any configuration atom in modern routers/switches, these configuration changes
that could affect outcomes in the control and data plane can be administered centrally
and pushed to the distributed elements. This mechanism is plagued by some of the
fundamental problems that drive SDN’s popularity. That is, one very pragmatic feature
of an SDN controller is one of a provisioning agent, a control point that facilitates slow
configuration commit times and inconsistency in CLI semantics and data models be‐
tween vendors. Ultimately, it is this slowness of operation that inhibits the programmatic
control of network elements and is one of the enhancements that SDN brings to the
table.

To many network operators, control is about the flexibility to affect the outcomes of
forwarding decisions and the ability to do this simply (and programmatically!). For
example, this includes making the network more elastic and efficient based on addi‐
tional knowledge or demands that we have above and beyond the algorithmic deter‐
mination of “best.” Both static routes and route policies also have limited scalability in
most implementations.

Convergence Time
The FIB (or the data plane forwarding state entries) in the IP model has undergone
years of optimization of both structure and traversal (lookup) algorithm. In this model,
convergence and load balancing are as important focal points for network operators/
designers as aforementioned black holes. Convergence is the time it takes from when a
network element introduces a change in reachability of a destination due to a network
event to when this change is seen and instantiated by all other relevant network elements.
One of the components of convergence that might be obvious to the reader is the
propagation delay of a specific update. This is normally a function of the average distance
from the site of first change measured in the number of intervening nodes that have to
re-flood/re-advertise the update. The remaining components of convergence focus on
the processing of the update locally, such as updating the RIB and instantiation in the
data plane which includes updating the FIB.
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16. Examples include Next Hop Tracking and Protocol Independent Convergence.

17. Drawn from RIB/FIB update optimization studies on different Tier 1 Service Provider networks. Results vary
by vendor and are dependent on prefix distribution and failure scenarios. One such study in 2010, shows a
range of overall convergence times between 7 and 0.7 seconds for ~14,000 prefixes (depending on the per‐
centage of IGP prefixes, particularly /32 prefix mask length—and assuming a constant raw RIB/FIB prefix
update time of less than 300usec per /32 prefix).

18. Some current vendor implementations are capable of a 7-tuple load balancing hash.

To optimize convergence processing at the protocol level, as well as the propagation/
flooding mechanism, each protocol has a different internal timer that is used to generate
various types of events for that protocol. This includes, for example, the generation of
“hello” messages to neighbors. At one point, part of the arcana of IP networking was in
the knowledge of the optimal settings for a protocol’s timers in a specific network design.
Today, much of this has been internalized as defaults for the various protocols in most
popular implementations. Of particular interest is how this is done for BGP, which
moves large volumes of data to many peers. To this end, different vendors have message
update packing, update prioritization, peer update grouping, and other internal opti‐
mizations to reduce redundant update generation processing, increase the speed of
convergence at the routing or control plane level, and increase update transmission
efficiency.

To optimize the updates to the FIB, different vendors have developed table organization
strategies and event-driven reaction strategies for key components of the recursive na‐
ture of the FIB (e.g., the BGP next hop). These optimizations minimize the number and
type of changes to the FIB that happen in response to a network event and thus minimize
convergence.16 These optimizations make it possible to perform anywhere from several
thousand to greater than 10,000 updates per second17 on some types of hardware.

Load Balancing
Load balancing in distributed IP forwarding evolved from packet-by-packet processing
to hashes of increasingly greater parts of the IP header. This occurred as a reaction to
the extent to which more and more individual flows began to be represented by gateway
devices, such as those used for voice and other media18. Load balancing is normally
applied to equal cost paths or bundled point-to-point circuits, although there are non-
equal-cost variants for certain purposes. The actual efficiency of a load balancing algo‐
rithm is bounded by both the computation algorithm itself, as well as the potential
imbalances in flow size an implementation might encounter. These can result in bin-
packing efficiency problems that ultimately lead to limitations in the number of equal
cost paths or bundle members supported by the implementation.
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High Availability
High Availability in the distributed IP context is provided through several mechanisms:

• Redundancy at the network level (the “two of everything” approach, where redun‐
dant routers/switches and redundant paths in the network design allow for the
failure of a link or element).

• Redundancy at the element level using redundant route processors/switch control
modules. The redundant processors can work in either a stateless active/standby
mode (which normally implies an interruption in forwarding if there is no alter‐
native path) or through stateful mirroring of control process data (e.g., nonstop
routing).

Creating the MPLS Overlay
In terms of a discussion of SDN, MPLS is an addition to the packet header—an encap‐
sulation that allows the operator of an IP network to create overlays or logical tunnels
on the IP network (the underlay), as shown in Figure 2-12.

Figure 2-12. An MPLS VPN (VRF label distribution via route reflection) over an OSPF
multiarea underlay
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19. An MPLS VPN can be created using MPLS labels inside GRE encapsulation (if the transiting network doesn’t
support MPLS label switching—essentially replacing the outer or IGP label). There have been recent proposals
to support similar functionality via MPLS in VxLAN encapsulation.

The label itself is 24 bits, which means there are 1,048,575 labels (the labels 0 through
15 are reserved), as shown in Figure 2-13.

Figure 2-13. MPLS label

Labels can be stacked in a LIFO (last in, first out) order. The stacking of labels allows
for the creation of multiple services or tunnels across a network. These were precursors
to today’s network overlays.

• A single label can enable an expedited lookup in the label table versus the IP for‐
warding table.

• Two labels create an abstraction that enables isolation, like that of the VPN where
the external label expedites forwarding to an element with multiple virtual instances
(VRFs) whose discriminator is the inner label19, as shown in Figure 2-14.

• Three or four labels create abstractions that enable the same forwarding through
an intervening tunnel (unprotected or protected), like VPNs constructed over traf‐
fic engineering tunnels (with or without fast reroute protection).

Like the IGP, many books have been written about the operation of MPLS, so we will
not attempt to explain it all, but again, a general description will help with our SDN
discussion going forward.
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20. Downstream-on-demand is also a feature of “seamless MPLS” implementation.

Figure 2-14. An MPLS VPN (VRF label distribution via route reflection) over an MPLS
TE core (all over an OSPF underlay)

The main aspects of MPLS operation involve label allocation, address binding, and label
distribution—all of which are controlled by configuration:

• The label distribution protocols can be LDP, RSVP (and BGP for the labeled unicast
address family). These control protocols have neighbor/session forming behaviors
and information exchange.

• Label allocation is normally dynamic, but label scale can be controlled somewhat
in some vendor implementations particularly in the context of VPNs by per-VRF
allocation or per-prefix/per-platform allocation. The assignment of these labels can
be ordered (but this is not a requirement).

• Label distribution can be downstream on-demand (e.g., RSVP for traffic engineer‐
ing20) or downstream unsolicited which is the default behavior of LDP.

Like the IGP, certain aspects of MPLS control plane behavior can be controlled by global
and local configuration with the same limitations listed previously. This includes the
ability to filter label advertisements, control label retention policy, control label range
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and the use and distribution of reserved labels. The network element can perform label
actions that include push, pop, swap, multiple push, and swap-and-push (in addition
to forward). Historically, not all network elements were capable of performing all of
these actions, nor were they capable of adequately supporting deeper label stacks.

When MPLS is deployed, the forwarding behavior of the data plane changes from
longest destination prefix match to a match of the topmost label on the label stack.
However, the forwarding path will still follow the acyclic graph computed for the des‐
tination prefix. While this leads to a more expeditious lookup, it adds complexity by
maintaining additional tables and references between the IP forwarding table and the
label table. MPLS also adds to the overall complexity of the distributed IP control
paradigm.

The specific application of MPLS traffic-engineered tunnels allows the operator to con‐
trol the path of tunnels and thus exploit areas of the network not used for ordinary
destination prefix-based forwarding. These MPLS tunnels are loaded based on the next
hop address of a class of prefixes, called a Forwarding Equivalence Class (FEC). A FEC
can also be a set of policies that specifically identify specific flows or quality of service
characteristics of the flows such as those used by policy-based routing.

Like the IP IGP, MPLS has been enhanced over time, particularly in the area of multipath
load balancing through innovations like the creation of sub-LSPs and entropy labels.

Replication
Both IP and MPLS distributed control apply equally to unicast and multicast, though
they both require unique protocols and data structures for multicast replication. Mul‐
ticast replication has a fairly long history in IP-only networks, starting with DVMRP,
then MOSPF, and evolving to PIM. In MPLS networks, there have been recent devel‐
opments around multicast in the VPN context (MVPN). Like their unicast relatives, the
multicast control protocols optimize around scale, convergence, and stability, as well as
strive to avoid black holes and cycle/loops. In the case of MVPN, there are additional
concerns about balancing multicast state in the network with the burden of replicating
packets on elements at the edge of the network.

Again, like the unicast protocols, these protocols allow a certain amount of
configuration-driven control, which suffers from the same limitations of unicast IP
protocols and MPLS configuration-based control.

Centralized Control Planes
The concept of a centralized control plane isn’t unique to the SDN movement. In fact,
the distributed model of control exists in part because the characteristics available in
more recently developed databases didn’t exist. Thus, it was difficult to achieve reliable

Centralized Control Planes | 37

http://www.it-ebooks.info/


21. Other examples include SS7 in voice networks and control of media gateways in VoIP.

22. While the Ipsilon solution didn’t provide an open programmable interface, it did provide a level of network
flexibility to the operator.

23. Ipsilon has (at least) two interesting IETF RFCs on this topic RFC 1953 and RFC 1954.

synchronization required for high availability and guaranteed consistency between two
or more control points.

The primary advantage of a centralized control plane is the view of the network it can
provide to an application and the simplification of programmatic control. To achieve
an end-to-end change in a large network, the application no longer has to know of or
directly touch the individual elements, but interacts instead with a few control points
that take care of these details. While they are not SDN solutions, there are some current
and historic models of partial or total centralization, notably the route server in the IP
domain and the ATM switch controller.21

There is also a famous attempt to productize what many consider a forbearer of modern
SDN22 via Ipsilon Networks. Their solution had an ATM component, though the value
proposition was actually deterministic routing using a combination of IP and ATM,23

which was subsequently marginalized by the introduction of tag switching and ulti‐
mately MPLS.

It should also be mentioned that the IETF has attempted to tackle some aspects of what
are now considered SDN. These included the separation of control/data planes through
both ForCES (RFC 3746) and Generalized Switch Management Protocol (GSMP—RFC
3292). The latter dates to February 2002!

Logical Versus Literal
To discuss a centralized control plane, it is necessary to separate the logical from the
literal.

Factors such as the following make literal centralization of control extremely difficult
and perhaps undesirable:
Scale

A central controller will support a control session with each managed device. As
the scale and volatility of the network increases, updates to an individual element
require increases in per-session I/O and processing. Additional features such as
collecting analytics through the channel or performing other management tasks,
presents an additional burden. At some point, it makes sense to divide the burden
into more manageable pieces.
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24. This is even more important if the state updates require acknowledgement—which they should!

25. Once the controller and controlled are not co-resident, the “backhoe factor” is introduced along with concerns
about SRLG (shared risk link groups) and other physical hazards.

26. Peak Information Rate, Committed Information Rate and Burst Size and Excess Burst Size.

High Availability
Even if the control session scale burden can be handled by a single controller, that
controller becomes a single point of failure that would result in the entire network
failing. Even if the entire network is configured to operate “headless” for a signifi‐
cant period, at some point other network failures or changes will need interaction
with the controller. If the controller has not been restored by then, this will be a
problem. The simplest high availability strategy would allow for an active/standby
combination of controllers.

Geography
Within a data center, almost everything managed is relatively close even if your data
center is many city blocks or many stories tall. Once the controller and controlled
element are separated by a metro, state, or national network, transmission delay
can begin to affect the efficiency of operation.24 Greater geographies also increase
the risk of partition (separating the controller from the element).25

Given these factors, a logically centralized but physically distributed control plane seems
to make more sense. The embrace of this concept is also the embrace of a federation
protocol of some kind to synchronize state among the physically distributed controllers.

ATM/LANE
Asynchronous Transfer Mode (ATM) is a connection-oriented cell switching and mul‐
tiplexing technology (standardized through the ITU-T). Like the previously described
IP and MPLS environments, a general (nonexhaustive) description of the protocol is
provided (focusing on those parts relevant to the discussion of SDN).

Most of ATM’s function was originally statically provisioned, supporting two types of
services; static circuits (permanent virtual circuits) and the later developed dynamic
circuits (switched virtual circuits). SVCs are dynamically set up (and torn down) using
a signaling protocol between the endpoints and the switches on a well-known channel
(VPI/VCI pair).

Using a subnet-able NSAP-based addressing scheme for the endpoints (independent of
higher layer protocols), ATM call control (circuit setup was patterned on telephony call
setup) or routing was based on source/destination NSAP, traffic and required QoS
(virtual circuits could be Variable Bit Rate or Committed Bit Rate depending on the
manipulation of QoS attributes26).
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Many networks later moved on to use something like the dynamic distributed routing
protocols of the IP environment (the ATM Forum standard, PNNI) for the distribution
of NSAP VPI/VCI mapping.

LAN emulation (LANE) emerged as an ATM Forum-defined specification that makes
an ATM network appear (to higher layers) much like an Ethernet (or Token Ring)
network—providing the same MAC-layer service interface. This interface manifested
differently in an ATM host than at the demarcation points where a true layer 2 device
(e.g., an Ethernet switch with an ATM NIC) interfaced with an ATM switch.

The most important point about the LANE protocol itself was that it creates an overlay
on the ATM switching underlay and was transparent to the switches.

To create this overlay, some ATM-connected, role-specific servers were required and
offered through one or more controllers. This is illustrated in Figure 2-15. The required
servers were the LES, the LEC, and the BUS:

• The LES (LAN Emulation Server) provided a MAC registration and control server
(one per emulated LAN) to LAN Emulation Clients (LEC)—essentially, the role of
ARP server for the ELAN (LE-ARP). The LEC was the protocol interface on the
host (or element) between the MAC and higher layer protocols.

• The LES was paired with a BUS. The BUS (Broadcast and Unknown Server) was a
multicast server that handled BUM traffic for a specific ELAN.

• The LECS (LAN Emulation Client Server) maintained a domain-wide database of
LEC/ELAN mappings was a query point for this level of resolution (providing the
ATM address of the LES serving a specific ELAN).

• The LECS addresses were manually configured on the ATM switches and discov‐
ered (by end stations) through either ILMI, a well-known ATM NSAP address for
the LECS or a connection on a well-known channel (VPI/VCI pair). The clients
connect to the servers via bidirectional control-direct (LES) and configuration-
direct (LECS) VCC. The clients connect to the BUS as a leaf of a point-to-multipoint
VCC.
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27. The LES/BUS works with dynamic state, and there was a “relearning” period when the LEC shifted from a
primary pair to a secondary (the Cisco FSSRP protocol attempted to work around the LEC disruption prob‐
lem, in exchange for more VCC scale and complexity). In some implementations, the user was required to
maintain the ordering of the LECS table on all the ATM switches.

Figure 2-15. LANE clients and servers

In Chapter 6, there should be striking resemblances between some of these overlay
fundamentals and some of the more modern underpinnings of data center orchestra‐
tion.

Though ATM has faded in its role in data networking, some of the first commercially
visible work in high availability and state maintenance in a controller/client environ‐
ment occurred in LANE. In fact, in version 1.0 of LANE, there was no redundancy at
all.

Later, SSRP evolved to provides a mechanism for the LECS to establish a logical/physical
hierarchy (priorities drive the creation of a VCC tree between LECS) that allows the
switch to provide multiple LECS addresses to the original LEC discovery mechanism
with a local switch. The LECS hierarchy allows just one primary to respond to the LEC
queries and the others to serve as a backup (that sense primary failure through the loss
of a VCC from the primary).

SSRP also allows for redundancy of LES/BUS pairs in an ELAN using a priority mech‐
anism (again, VCC connectivity to the LECS is a used as a liveliness test for a pair).

This redundancy scheme added significant overhead to the network (a large number of
VCCs used solely for control), and the onus was on a network administrator to keep all
the LECS databases in sync—manually!27

From an SDN perspective then, ATM switching had static and dynamic controls (the
former was centrally administered through a proprietary management interface) that
created an underlay. Control was not programmatic (vendors provided a proprietary
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28. Notable examples include Quagga (a fork of GNU Zebra) and BIRD.

29. The RIPE IRR is an example of such a registry.

provisioning system as part of an overall management system with no real external API).
LANE provides a specific type of logical overlay, supported by multiple servers (or
controller-like functionality). These server functions also did not have a programmatic
interface and had rudimentary high-availability characteristics.

Route Servers
The route server evolved as a means for Internet service providers to handle the scale
of peers and policies at external peering points. A slightly different mechanism (the
route reflector) was standardized for this purpose for internal peers.

A route server is an eBGP-based control point (normally on a shared segment that
appears to all parties as a separate autonomous system) that receives control state up‐
dates (NLRI) from each participant, applies filters and policies to those updates, calcu‐
lates best path based on the resulting data (which could be different than normal BGP
best path based on this intermediary policy step), and creates a per-participant RIB (that
is returned to the participant)28 and shown in Figure 2-16. The route server is trans‐
parent as far as attributes like AS path. Each participant needs only a single BGP session
for the exchange.

Figure 2-16. Route server architecture

The route server can interface to a routing registry.29 The registry is a distributed store
of route objects (ASN, policies, prefixes, authentication info) that provides a toolset that
can enable automatic provisioning of both stand-alone peers (edge routers) and route
servers, as shown in Figure 2-17.
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30. As route reflector usage has grown in importance in service provider networks, some ability to alter the
defined/standardized behaviors of the reflector have emerged (e.g., the ability to advertise more than one
best path to a client and the ability to advertise next-hop-self).

Figure 2-17. IIR and route server interconnection

A route reflector provides a similar service to internal peers, though it is a more trans‐
parent service (as the term “reflector” implies) with some limited intermediary policy
insertion and a stricter set of defined behaviors.30

A good example of its use is the VPN service-specific reflector that removes the need
for all VPN edge routers (the customer facing Provider Edge router) from having to
form and maintain a complete mesh of BGP sessions to exchange NLRI for the VPN
address families, shown in Figure 2-18. Route reflectors support high availability (clus‐
ters) and hierarchical distribution.
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Figure 2-18. Route reflection of prefix 11.11.11.11/24 from one client across a hierarchy
of reflectors to all clients

Both of these devices offer a centralized point of control from which a provider could
potentially inject route state. Many service providers use such control points with their
own scripted/automated interfaces to provision VPN services, mitigate DDOS attacks
(injecting black-hole or attractor routes), and perform other tasks.

Because these devices communicate via a standard control protocol (BGP) that provides
for both inter- and intra-domain information exchange, they are easily federated and
synchronized to enable geographic distribution.

From an SDN perspective, the main problem with the BGP-based control point today
is a lack of standardized programmability. Some would argue that RPSL (Route Policy
Specification Language) is a standard for expressing/programming BGP policy in a
route server. However, this is not a complete/adequate solution (missing a standard API,
transaction orientation) for a generalized BGP control point like a route reflector. Some
ISP’s use in-house developed tools that process RPSL database files directly and help in
the automation of their BGP controls.

Conclusions
The distributed control plane and its eventual consensus model have evolved over time
to try and satisfy not only the continual scale/growth of the Internet in general, but to
address the concerns of network operators around consistency (black-hole and loop
avoidance) and fast convergence.

44 | Chapter 2: Centralized and Distributed Control and Data Planes

http://www.it-ebooks.info/


31. These control points are considered the “opportunity point” for SDN development (to be discussed in Chap‐
ter 4).

In this paradigm, the fundamental concept of an underlay and overlay abstraction
gained widespread acceptance (exemplified by IP forwarding and the overlay abstrac‐
tion of MPLS).

The chief weaknesses of the distributed control model are in the areas of network flex‐
ibility and user control (there is not enough granular control over the consensus path
selection to provide sufficient flexibility), programmability (there are no standard API
to inject state or extract information and most automation is either vendor dependent
or heavily embedded with knowledge of vendor configuration/operation command se‐
mantics), as well as the high degree of integration of its control, data, service, and man‐
agement planes (driving a scale upgrade cycle and other dependencies). Elements in
this model have only recently begun to experiment with the externalizing the control
plane so that the route processor can run on more scalable (and easily upgradeable)
compute platforms (that are not bound by the drag introduced in creating specific car‐
riers and fabric interfaces for an in-shelf processor).

It could be argued that the recursion through and interaction of the IGP/BGP/MPLS
paradigm introduce a good deal of complexity and overhead. However, models are also
evolving a number of integrated convergence, high-availability, and black-hole avoid‐
ance mechanisms that providers find desirable.

Centralizing the control plane in a logically centralized but physically distributed model
makes sense from scale, high-availability, and geographical perspectives.

SDN advocates can learn from historical attempts at centralization. Two examples are
provided; ATM LANE (which is truly historical) and the route server (still used in the
IP forwarding domain).

The LANE system of servers provided the first glimpses into the complexities of high
availability in a centralized model. Their high-availability model lacked synchronization
and often required the user to manually maintain the LECS database in a specific order.
These models significantly increased the scale of the control plane infrastructure (in the
form of a very large VCC fan out between servers and elements).

The more modern route server and route reflector provide a centralized control
point31 for an otherwise distributed IP control plane.

Both of these central control points reduce the scale of the distributed control infra‐
structure. The route server provides programmability, but not in a standardized fashion,
and doesn’t introduce any more flexibility or granularity of control. The same can be
said for the route reflector, though many service providers use automation on top of
the route reflector to influence forwarding in their networks. Though the route server
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has specific applications layered on top of its database (e.g., WHOIS), it doesn’t directly
provide additional application services to programmers (e.g., topology).

OpenFlow (and its accompanying SDO, the ONF) is credited with starting the discus‐
sion of SDN and providing the first vestige of modern SDN control: a centralized point
of control, a northbound API that exposes topology, path computation, and provision‐
ing services to an application above the controller), as well as a standardized southbound
protocol for instantiating forwarding state on a multivendor infrastructure.

Unfortunately, the OpenFlow architecture does not provide a standardized northbound
API (yet), nor does it provide a standardized east-west state distribution protocol that
allows both application portability and controller vendor interoperability. Standardi‐
zation may progress through the newly spawned Architecture Working Group.

OpenFlow provides a great deal of flow/traffic control for those platforms that can
exploit the full set of OpenFlow primitives. The ONF has spawned a working group to
address the description/discovery of the capabilities of vendor hardware implementa‐
tions as they apply to the use of the primitive set to implement well-known network
application models.

Even though there are questions about the level of abstraction implemented by Open‐
Flow and whether its eventual API represents a complete SDN API, there is interest in
its application, and ongoing efforts around hybrid operation may make it easier to in‐
tegrate its capability for matching/qualifying traffic in traditional/distributed networks
or at the borders between OpenFlow domains and native domains.
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1. There are currently 90+ members of the ONF, including academic and government institutions, enterprises,
service providers, software companies, and equipment manufacturers.

CHAPTER 3

OpenFlow

Introduction
Chapter 2 reviewed the control and data planes. In this chapter, a lot of our focus will
be on the continuously evolving OpenFlow proposal and protocols, viewed by many as
the progenitor of the clean slate theory and instigator of the SDN discussion, but we
will also discuss, in general terms, how SDN controllers can implement a network’s
control plane, and in doing so, potentially reshape the landscape of an operator’s net‐
work.

OpenFlow was originally imagined and implemented as part of network research at
Stanford University. Its original focus was to allow the creation of experimental proto‐
cols on campus networks that could be used for research and experimentation. Prior to
that, universities had to create their own experimentation platforms from scratch. What
evolved from this initial kernel of an idea was a view that OpenFlow could replace the
functionality of layer 2 and layer 3 protocols completely in commercial switches and
routers. This approach is commonly referred to as the clean slate proposition.

In 2011, a nonprofit consortium called the Open Networking Foundation (ONF) was
formed by a group of service providers1 to commercialize, standardize, and promote
the use of OpenFlow in production networks. The ONF is a new type of Standards
Development Organization in that it has a very active marketing department that is
used to promote the OpenFlow protocol and other SDN-related efforts. The organiza‐
tion hosts an annual conference called the Open Networking Summit as part of these
efforts.
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In the larger picture, the ONF has to be credited with bringing attention to the phe‐
nomenon of software-defined networks.

The key components of the OpenFlow model, as shown in Figure 3-1, have become at
least part of the common definition of SDN, mainly:

• Separation of the control and data planes (in the case of the ONF, the control plane
is managed on a logically centralized controller system).

• Using a standardized protocol between controller and an agent on the network
element for instantiating state (in the case of OpenFlow, forwarding state).

• Providing network programmability from a centralized view via a modern, exten‐
sible API.

Figure 3-1. OpenFlow architecture (with the view that some of the control plane
apps will ride on TOP of the controller—emulating the behavior of traditional con‐
trol plane apps)
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2. FlowVisor will introduce some intermediary delay since it has to handle packets between the switch and
controller.

OpenFlow is a set of protocols and an API, not a product per se or even a single feature
of a product. Put another way, the controller does nothing without an application pro‐
gram (possibly more than one) giving instructions on which flows go on which elements
(for their own reasons).

The OpenFlow protocols are currently divided in two parts:

• A wire protocol (currently version 1.3.x) for establishing a control session, defining
a message structure for exchanging flow modifications (flowmods) and collecting
statistics, and defining the fundamental structure of a switch (ports and tables).
Version 1.1 added the ability to support multiple tables, stored action execution,
and metadata passing—ultimately creating logical pipeline processing within a
switch for handling flows.

• A configuration and management protocol, of-config (currently version 1.1) based
on NETCONF (using Yang data models) to allocate physical switch ports to a par‐
ticular controller, define high availability (active/standby) and behaviors on con‐
troller connection failure. Though OpenFlow can configure the basic operation of
OpenFlow command/control it cannot (yet) boot or maintain (manage in an
FCAPS context) an element.

In 2012, the ONF moved from “plugfests” to test interoperability and compliance, to a
more formalized test (outsourced to Indiana University). This was driven by the com‐
plexity of the post-OpenFlow wire version 1.0 primitive set.

While the ONF has discussed establishing a reference implementation, as of this writing,
this has not happened (there are many open source controller implementations).

OpenFlow protocols don’t directly provide the network slicing (an attractive feature
that enables the ability to divide an element into separately controlled groups of ports
or a network into separate administrative domains). However, tools like FlowVisor2

(which acts as a transparent proxy between multiple controllers and elements) and
specific vendor implementations (agents that enable the creation of multiple virtual
switches with separate controller sessions) make this possible.
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3. The ability to create ephemeral state in combination with programmatic control may only be a temporary
advantage of OpenFlow, as there are proposals to add this functionality existing programmatic methods (like
NETCONF).

4. This is not a unique proposition in that PCRF/PCEF/PCC systems (with associated Diameter interactions)
have done this in the past in mobile networks on a per-subscriber basis. Standards organizations have been
working on a clear definition and standardized processing of the interchanged messages and vendor inter‐
operability between components of the overall system. There is no doubt that the mobile policy systems could
evolve into SDN systems and have SDN characteristics. When this happens, the primary distinctions between
them and OpenFlow may be flexibility (simplicity, though objective, may also be appropriate).

5. The type of match supported (contiguous or offset based) is another platform-dependent capability.

6. Unfortunately, backward compatibility was broken between version 1.2 and prior versions when a TLV
structure was added to ofp_match (and match fields were reorganized). In fact, version 1.2 was considered
non-implementable because of the number and types of changes (though there was an open source agent that
finally did come out in 2012). There were changes to the HELLO handshake to do version discovery, and
incompatible switch versions fail to form sessions with the controller.

Wire Protocol
So, where does OpenFlow go that we haven’t been before?

First, it introduces the concept of substituting ephemeral state (flow entries are not
stored in permanent storage on the network element) for the rigid and unstandardized
semantics of various vendors’ protocol configuration.3 Ephemeral state also bypasses
the slower configuration commit models of past attempts at network automation.

For most network engineers, the ultimate result of such configuration is to create for‐
warding state (albeit distributed and learned in a distributed control environment). In
fact, for many, the test of proper configuration is to verify forwarding state (looking at
routing, forwarding, or bridging tables). Of course, this shifts some of the management
burden to the controller(s)—at least the maintenance of this state (if we want to be
proactive and always have certain forwarding rules in the forwarding table) versus the
distributed management of configuration stanzas on the network elements.4

Second, in an OpenFlow flow entry, the entire packet header (at least the layer 2 and
layer 3 fields) are available for match and modify actions, as shown in Figure 3-2. Many
of the field matches can be masked5. These have evolved over the different releases of
OpenFlow6. Figure 3-2 illustrates the complexity of implementing the L2+L3+ACL for‐
warding functionality (with next hop abstraction for fast convergence) can be. The
combination of primitives supported from table to table leads to a very broad combi‐
nation of contingencies to support.
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Figure 3-2. OpenFlow (wire) version 1.0 primitives

This is a striking difference in breadth of operator control when compared with the
distributed IP/MPLS model (OpenFlow has an 11-tuple match space). A short list of
possibilities includes:

• Because of the masking capability in the match instructions, the network could
emulate IP destination forwarding behavior.

• At both layer 2 and layer 3, the network can exhibit source/destination routing
behavior.

• There is no standardized equivalent (at present) to the packet matching strengths
of OpenFlow, making it a very strong substitute for Policy Based Routing or other
match/forward mechanisms in the distributed control environment.

Finally, there is the promise of the modify action. The original concept was that the
switch (via an application running above the switch) could be made to behave like a
service appliance, performing services like NAT or firewall). Whether or not this is
realizable in hardware-based forwarding systems, this capability is highly dependent
on vendor implementation (instructions supported, their ordering, and the budgeted
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7. A later use case explores creating such an application above the controller or virtualizing it in a virtual service
path.

8. CONTROLLER is the only required reserved port in this particular set (the others are optional). The other
ports are ANY, IN_PORT, ALL, and TABLE, which are all required. The combinations listed here are inter‐
esting for their potential interactions in a hybrid.

9. The original definition of a “hybrid” was a switch that would behave both as an OpenFlow switch and a layer
2 switch (for the ports in the OpenFlow domain).

number of operations to maintain line rate performance)7. However, with the label ma‐
nipulation actions added to version 1.3 of the wire protocol, it is possible that an Open‐
Flow controlled element could easily emulate integrated platform behaviors like an
MPLS LSR (or other traditional distributed platform functions).

The OpenFlow protocol is extensible through an EXPERIMENTER extension (which
can be public or private) for control messages, flow match fields, meter operation, sta‐
tistics, and vendor-specific extensions (which can be public or private).

Table entries can be prioritized (in case of overlapping entries) and have a timed expiry
(saving clean-up operation in some cases, and setting a drop dead efficacy for flows in
one of the controller loss scenarios).

OpenFlow supports PHYSICAL, LOGICAL, and RESERVED port types. These ports
are used as ingress, egress, or bidirectional structures.

The RESERVED ports IN_PORT and ANY are self-explanatory.

TABLE was required to create a multitable pipeline (OpenFlow supports up to 255 un-
typed tables with arbitrary GoTo ordering).

The remaining RESERVED ports enable important (and interesting) behaviors8:
LOCAL

An egress-only port, this logical port allows OpenFlow applications access ports
(and thus processes) of the element host OS.

NORMAL
An egress-only port, this logical port allows the switch to function like a traditional
Ethernet switch (with associated flooding/learning behaviors). According to the
protocol functional specification, this port is only supported by a Hybrid switch.9

FLOOD
An egress-only port, this logical port uses the replication engine of the network
element to send the packet out all standard (nonreserved) ports. FLOOD differs
from ALL (another reserved port) in that ALL includes the ingress port. FLOOD
leverages the element packet replication engine.
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10. There is a rather complete commentary regarding these changes to the protocol, particularly the change of
the protocol from a session-based channel to UDP in a JIRA ticket filed by David Ward.

CONTROLLER
Allows the flow rule to forward packets (over the control channel) from data path
to the controller (and the reverse). This enables PACKET_IN and PACKET_OUT
behavior.

The forwarding paradigm offers two modes: proactive (pre-provisioned) and reactive
(data-plane driven). In the proactive mode, the control program places forwarding en‐
tries ahead of demand. If the flow does not match an existing entry, the operator has
two (global) options—to drop the flow or to use the PACKET_IN option to make a
decision to create a flow entry that accommodates the packet (with either a positive/
forward or negative/disposition)—in the reactive mode.

The control channel was originally specified as a symmetric TCP session (potentially
secured by TLS). This channel is used to configure, manage (place flows, collect events,
and statistics) and provide the path for packets from the switch to and from the con‐
troller/applications.

Statistics support covers flow, aggregate, table, port, queue, and vendor-specific coun‐
ters.

In version 1.3 of the protocol, multiple auxiliary connections are allowed (TCP, UDP,
TLS, or DTLS) that are capable of handling any OpenFlow message type or subtype.
There is no guarantee of ordering on the UDP and DTLS channels, and behavioral
guidelines are set in the specification to make sure that packet-specific operations are
symmetric (to avoid ordering problems at the controller).10

OpenFlow supports the BARRIER message to create a pacing mechanism (creating
atomicity or flow control) for cases where there may be dependencies between subse‐
quent messages (the given example is a PACKET_OUT operation that requires a flow
to first be placed to match the packet that enables forwarding).

Replication
OpenFlow provides several mechanisms for packet replication.

The ANY and FLOOD reserved virtual ports are used primarily for emulating/support‐
ing the behaviors of existing protocols (e.g., LLDP, used to collect topology for the
controller, often uses FLOOD as its output port).

Group tables allow the grouping of ports into an output port set to support multicasting,
multipath, indirection, and fast-failover. Each group table is essentially a list of action
buckets (where ostensibly one of the actions is output, and an egress port is indicated).
There are four group table types, but only two are required:
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11. The specification claims the “all” group type is usable for multipath, but this is not multipath in the IP
forwarding sense, as the packet IS replicated to both paths. This behavior is more aligned with live/live video
feeds or other types of multipathing that require rectification at an end node.

All
Used for multicast all action buckets in the list have to be executed11

Indirect
Used to simulate the next hop convergence behavior in IP forwarding for faster
convergence

Action lists in the Apply action (the Apply action was a singleton in OpenFlow version
1.0) allow successive replications by creating using a list of output/port actions.

FAWG (Forwarding Abstraction Workgroup)
The model for an OpenFlow switch (Figure 3-3) works well on a software-based switch
(eminently flexible in scale and packet manipulation characteristics) or a hardware-
forwarding entity that conforms to some simplifying assumptions (e.g., large, wide,
deep, and multi-entrant memories like a TCAM). But because not all devices are built
this way, there’s a great deal of variation in the support of all the packet manipulations
enabled by the set of OpenFlow primitives, multiple tables, and other aspects that give
OpenFlow its full breadth and power.

Figure 3-3. The OpenFlow 1.0 forwarding model (very simple shared table model)

In general, the potential combinatorial complexity of OpenFlow version 1.1 (see
Figure 3-4) and beyond do not work well on ASIC-based forwarders. For this reason,
the level of abstraction chosen for OpenFlow has come into question, as has its applic‐
ability for ALL applications.
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12. http://searchnetworking.techtarget.com/news/2240174517/Why-Nicira-abandoned-OpenFlow-hardware-
control (Subscription required to read full article.)

13. This expression of OpenFlow complexity courtesy of David Meyer.

14. FPMODs and Table Typing Where To From Here? (David Meyer/Curt Beckmann) ONF TAG-CoC 07/17/12.

While this is a commonly held belief, an interview of Martin Casado (OpenFlow creator)
is often cited in the more general argument about abstraction level.12

In full context of the interview, Martin cites a role for OpenFlow in Traffic Engineering
applications, makes comments on the current limitations of implementing OpenFlow
on existing ASICs (to the general point), and then makes a specific comment on the
applicability of OpenFlow for Network Virtualization: “I think OpenFlow is too low-
level for this.”)13

Figure 3-4. The post OpenFlow pipeline model in version 1.1 and beyond (very complex
—combinations complexity O(n!* a(2^l)) paths where n = number of tables, a = num‐
ber of actions and l = width of match fields)

The protocol had limited capability detection in earlier versions, which was refactored
in version 1.3 to support some primordial table capability description (adding match
type for each match field—e.g., exact match, wildcard, and LPM).

The following shortcomings were cited for the existing abstraction14:

• Information loss
• Information leakage
• Weak control plane to data plane abstraction
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15. A more complex solution was proposed (under the title Forwarding Plane Models - FPMOD) by the Open‐
Flow Future Discussion Group but was tabled for the simpler table type profile model being developed in
FAWG (suggested by the TAG). This solution is less a set of models and more an extensible set of primitives
that are mapped at the switch Hardware Abstraction Layer coding time instead of at the controller (of course,
based on a negotiated model of behavior, but not necessarily a static predefined model limited to a pipeline
description).

16. This example also comes from the Meyer/Beckman reference cited earlier in this chapter.

• Combinatorial state explosion
• Data-plane-driven control events
• Weak indirection infrastructure
• Time-sensitive periodic messaging
• Multiple control engines
• Weak extensibility
• Missing primitives

A separate workgroup, FAWG, is attempting a first-generation, negotiated switch model
through table type patterns (TTPs).15 FAWG has developed a process of building, iden‐
tifying (uniquely), and sharing TTPs. The negotiation algorithm (built on a Yang model)
and messaging to establish an agreed TTP between controller and switch is also being
developed (a potential addition to of-config version 1.4).

A TTP model is a predefined switch behavior model (e.g., HVPLS_over_TE forwarder
and L2+L3+ACL) represented by certain table profiles (match/mask and action) and
table interconnections (a logical pipeline that embodies a personality). These profiles
may differ based on the element’s role in the service flow (e.g., for the HVPLS forwarder,
whether the element is head-end, mid-point, or egress).

Early model contributions suggest further extensions may be required to achieve TTP
in OpenFlow version 1.3.x.

If FAWG is successful, it may be possible for applications above the controller to be
aware of element capabilities, at least from a behavior profile perspective.

Here is a simple example of the need for TTP (or FPMOD).16

Hardware tables can be shared when they contain similar data and have low key diversity
(e.g., a logical table with two views; MAC forwarding and MAC Learning). This table
could be implemented many different ways, including as a single hardware table. An
OpenFlow controller implementing MAC learning/bridging will have to have a separate
table for MAC learning and a different table for MAC bridging (a limitation in expres‐
sion in OpenFlow). There is no way today to tie these two potentially differing views
together. In this simple example shown in Figure 3-5, there could arise timing scenarios
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17. Much of optical switch configuration is static and persistent, so some of the extensions required may be better
suited to of-config.

where synchronization of table of flow mods from the two separate OpenFlow table
entities may be necessary (i.e., you can’t do forwarding before learning).

Figure 3-5. Example of complexity behind TTP model for L2+L3+ACL/PBR TTP
(source: D. Meyer and C. Beckmann of Brocade)

In Figure 3-5’s case, IPv4 and IPv6 tables point to group tables to emulate the use of the
next hop abstraction in traditional FIBs (for faster convergence).

Config and Extensibility
The of-config protocol was originally designed to set OpenFlow related information on
the network element (of-config 1.0). The protocol is structured around XML schemas,
Yang data models, and the NETCONF protocol for delivery.

Proposals to extend of-config can come from within the Config-Mgmt Working Group
or from other groups (e.g., FAWG, Transport17).
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As of version 1.1 of of-config, the standard decouples itself from any assumptions that
an operator would run FlowVisor (or a similar, external slicing proxy) to achieve mul‐
tiple virtual switch abstractions in a physical switch. This changes the working model
to one in which the physical switch can have multiple internal logical switches, as il‐
lustrated in Figure 3-6.

Figure 3-6. The relationship of config to wire protocols (source: OF-Config version 1.1)

Using of-config version 1.1, in addition to controllers, certificates, ports, queues, and
switch capabilities operators can configure some logical tunnel types (IP-in-GRE, NV-
GRE, VX-LAN). This extension requires the support of the creation of logical ports on
the switch.

Proposals exist to expand of-config further in the areas of bootstrapping and to expand
the abilities of the of-config protocol in version 1.2 (see Figure 3-7) to support even
more switch/native functionality (e.g., the ability to configure a local/native OAM pro‐
tocol daemon has been proposed as an extension).
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18. Because of-config uses NETCONF/Yang, the working group is establishing their own Yang data models for
these entities (tunnels, OAM). From an SDO perspective, this may not be a good model going forward.

Figure 3-7. Capability progression of OF-Config

By extending of-config into native components, the ONF may have inadvertently
broached the topic of hybrid operation and may also have created some standards-
related confusion18.

One of the slated items for the Architecture group to study is a potential merge of the
wire and configuration protocols. The Architecture group is not chartered to produce
any protcols or specifications as its output, so that would have to be done at a future
time by a different group.

The use of NETCONF may also be expanded in call home scenarios (i.e., switch-initiated
connections), but the designation of BEEP (specified for NETCONF connections of this
type in of-config) to a historical protocol may require some changes in the specification
or cooperative work with the IETF.

The Extensibility Working Group exists to vet proposed extensions to the wire protocol
to add new functionality to OpenFlow (see Figure 3-8 for the general progression of the
protocol).
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19. Later, the ONF moved to require new extensibility and config-management suggestions to be implemented
as prototypes using the extension parts of the protocol as a working proof of concept (somewhat like other
SDO’s requirements for working code to accompany a standard).

Figure 3-8. The progression of enhancements to the OpenFlow pipeline from OF v1.1
through OF v1.3

In April 2012, when OpenFlow wire protocol version 1.3 was released, the ONF decided
to slow down extensibility releases until there was a higher adoption rate of that version
and to allow for interim bug-fix releases (e.g., allowing a 1.3.1 release to fix minor things
in 1.3).19
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20. A proposal to extend the wire protocol to support optical circuit switching (EXT-154). This extension deals
with simple wavelength tuning and further definitions of a port.

21. There is some merit to the claim that GMPLS was supposed to provide this standardization but that the
definitions, interpretations, and thus the implementations of GMPLS are inconsistent enough to void a guar‐
antee of multivendor interoperability.

22. The solution will either allow direct control of the elements or leverage the proxy slicing functionality of a
FlowVisor-like layer and introduce the concept of a client controller for each virtual slice of the optical/
transport network (to fit the business applications common or projected in the transport environment).

The major extension candidates for the OpenFlow wire protocol version 1.4 come from
a newly formed Transport Discussion Group,20 whose focus is on an interface between
OpenFlow and optical transport network management systems to create a standard,
multivendor transport network control (i.e., provisioning) environment.21

Look for full coverage of OpenFlow version 1.4 enhance‐
ments in a future edition of this book.

The first efforts at the integration of transport and OpenFlow demonstrated capability
by abstracting the optical network into an understandable switch model for OpenFlow
—an abstract view to create a virtual overlay.

The architecture of the currently proposed transport solution(s) coming out of the
discussion group will combine the equipment level information models (i.e., OTN-NE,
Ethernet NE, and MPLS-TP NE) and network level information models (MTOSI,
MTNM) in combination with an OpenFlow driven control plane—a direct control al‐
ternative.22

Even in the direct control scenario, questions remain about various hybrid control plane
scenarios. This is the case over whether or not there will be a combination of traditional
EMS/NMS protocols and OpenFlow-driven control on the same transport network.
This is illustrated in Figure 3-9.
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Figure 3-9. A hybrid control environment for a transport network that includes Open‐
Flow control

Architecture
While OpenFlow provides a standardized southbound (controller to element agent)
protocol for instantiating flows, there is no standard for either the northbound (appli‐
cation facing) API or the east/west API.

The east/west state distribution on most available controllers is based on a database
distribution model, which allows federation of a single vendor’s controllers but doesn’t
allow an interoperable state exchange.

The Architecture Working Group is attempting to address this at least indirectly—
defining for SDN a general SDN architecture. The ONF has a history of marrying the
definition of SDN and OpenFlow. Without these standardized interfaces, the question
arises whether the ONF definition of SDN implies openness.

Most OpenFlow controllers (Figure 3-10) provide a basic set of application services:
path computation, topology (determined through LLDP, which limits topology to layer
2), and provisioning. To support of-config, they need to support a NETCONF driver.
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23. There has been an ongoing debate as to whether OpenFlow is SDN.

Figure 3-10. OpenFlow controller components (FlowVisor and the applications are sep‐
arate entities)

The ongoing questions about SDN architecture and OpenFlow are around whether the
types of application services provided by an OpenFlow controller (and the network layer
at which OpenFlow operates) are sufficient for all potential SDN applications.23

Research into macro topics around the OpenFlow model (e.g., troubleshooting, the
expression of higher level policies with OpenFlow semantics, and the need for a verifi‐
cation layer between controllers and elements) are being conducted in many academic
and research facilities, but specifically at the Open Network Research Center (ONRC).

Hybrid Approaches
The ONF did spawn a Hybrid Working Group. The group proposed architectures for
a Ships in the Night (SIN) model of operation and an Integrated Hybrid model. The
board only accepted the recommendations of the SIN model.

The Integrated Hybrid model spawned a series of questions around security and the
inadvertent creation of a hybrid network.
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Assuming a controlled demarcation point is introduced in the network element (be‐
tween the OpenFlow and native control planes), the security questions revolve around
how the reserved ports (particularly CONTROLLER, NORMAL, FLOOD, and LOCAL)
could be exploited to allow access to native daemons on the hybrid (applications on the
controller or OpenFlow ports spoofing IGP peers and other protocol sessions to insert
or derive state) or the native network.

The security perimeter expands in the case of an unintended connection that creates a
hybrid network. This occurs when one end of an external/non-loopback network link
is connected to an OpenFlow domain and the other end to a native domain.

A newly forming Security Working Group could address hybrid secu‐
rity concerns, which at the time of this writing didn’t encompass
enough material for a separate discussion. Look for more on this in
future editions of this book.

Ships in the Night
The Ships in the Night proposition assumes that a port (physical or logical) can only be
used for OpenFlow or native, but not both (see Figure 3-11). The focus of SIN was on:

• Bounding the allocated resources of the OpenFlow process and such that they
couldn’t impede the operation of the native side (and the reverse). Suggestions in‐
cluded the use of modern process level segregation in the native host OS (or by
virtualization).

• Avoiding the need to synchronize state or event notifications between the control
planes.

• Strict rules for the processing of flows that included the use of the LOCAL, NOR‐
MAL, and FLOOD reserved ports (with explicit caveats25).

SIN expands the preceding ONF definition of hybrid (as reflected in the definition of
NORMAL).

The SIN model allowed port segregation by logical port or VLAN and recommended
the use of MSTP for spanning tree in such an environment (a step that is actually nec‐
essary for certain types of integrated hybrids).

Lastly, SIN pointed out the ambiguities in the interactions of the reserved ports and the
looseness of the port delegation model as potential areas of improvement for a SIN
hybrid.
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24. For those that desire a hybrid network, a hybrid-network design proposal (the Panopticon hybrid) with a
structure similar to a Data Center overlay model (using pseudowires for the overlay) was presented at ONS
2013.

Figure 3-11. SIN architecture (source: ONF Hybrid SIN WorkGroup)

Dual Function Switches
The recommendations of the Hybrid Working Group’s Integrated Architecture white
paper were rejected by the ONF. The board later recommended the formation of a
Migration Working Group to assist OpenFlow adopters in the deployment of OpenFlow
network architecture without a transitory period through hybrid use. However, demand
for integrated hybrids still remains, and the newly formed Migration Working Group
may address hybrid devices and hybrid networks.24

One of the existing/deployed models of integration is to integrate the OpenFlow domain
with the native domain at the control level (e.g., RouteFlow). Unlike the integrated
hybrid, this purposely builds a hybrid network (see Figure 3-12).

The general concept behind this approach is to run a routing stack on a virtual host and
bind the virtual ports on the hypervisor vswitch in that host to physical ports on
associated OpenFlow switches. Through these ports, the virtual router forms IGP and/
or BGP adjacencies with the native network at appropriate physical boundary points by
enabling the appropriate protocol flows in the flow tables of the boundary switches. The
virtual router then advertises the prefixes assigned to the OpenFlow domain through
appropriate boundary points (appearing to the native network as if they were learned
through an adjacent peer). Additionally, (by using internal logic and policies) the virtual
router creates flow rules in the OpenFlow domain that direct traffic toward destination
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prefixes learned from neighbors in this exchange using flow rules that ultimately point
to appropriate ports on the boundary switch.

Figure 3-12. RouteFlow architecture (source: http://cpqd.github.io/RouteFlow/)

One potential drawback of this hybrid design is that flow management and packet I/O
take place serially on a common TCP session, which brings the design back around to
the problems that needed to be addressed in the traditional distributed control plane:
blocking, control packet I/O, latency, queue management, and hardware programming
speed. Some of these problems may be ameliorated by the use of alternative control
channels (proposed in OpenFlow 1.3), as these ideas progress and mature in the Open‐
Flow wire protocol.
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The tools we have at hand to form an integrated hybrid connection (in the OpenFlow
protocol and the native protocols on the same device) are tables and interfaces.

A table-based solution could be crafted that uses the GoToTable semantics of OpenFlow
to do a secondary lookup in a native table. Today, OpenFlow has no knowledge of tables
other than its own and no way to acquire this knowledge. A solution could be crafted
that allows the discovery of native tables during session initialization. The problems
with this solution are as follows:

• The table namespace in OpenFlow is too narrow for VRF table names in native
domains.

• There can be a great deal of dynamic table creation on the native side, particularly
on a provider edge or data center gateway device that would need to be updated to
the controller (restarting the session could be onerous and dynamic discovery re‐
quires even more standardization effort).

• The native domain could have more than 64 tables on certain devices.
• Though a GoToTable solution would be elegant (incorporating all our assumptions

for transparency above), it seems like a complicated and impactful route.

There currently are unofficial, interface-based solutions to achieve bidirectional flow
between domains. The most common is to insert a layer 3 forwarding artifact in the
OpenFlow switch domain. That artifact can then be leveraged through a combination
of NORMAL behavior, DHCP, and ARP, such that end stations can discover a forward‐
ing gateway device in an OpenFlow domain. While this works, it is far from robust. The
NORMAL logical port is an egress-only port on the OpenFlow side, so flowmods to
control the traffic in the reverse direction are not possible. Further, some administrators/
operators do not like to use the NORMAL construct for security reasons.

It is possible to create rules directly cross-connecting a layer 3 artifact with OpenFlow
controlled ports to allow ingress and egress rules, if we move forward with some ex‐
tension to the interface definition that allows us to tag the interface as a layer 3 forwarder
or native port (the semantics are our least concern). For example, in the Junos OS (Ju‐
niper Networks), there is a construct called a logical tunnel (see Figure 3-13). This
construct can have one end in the OpenFlow domain and one in any routing domain
on the native side. For an operator, this provides a scalable, transparent hybrid solution,
but the only tag the operator can hang on the port (to discover its dual nature) is its
name (which is unfortunately unique to Juniper Networks).
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Figure 3-13. Juniper Networks’ integrated hybrid proposal (source: Juniper Networks)

An interface-based solution would then require the following:

• At minimum, an extension to port description to tag it as a native artifact (an access
point between domains). Other additional attributes may indicate the nature of the
domains (e.g., IP/MPLS) and the routing-instances that they host. These attributes
can be exchanged with the vendor agent during port-status message or in Features-
reply message, as part of port-info. (These are proposed extensions to the OpenFlow
standard.)

• The vendor agent should implement any MAC-related functionality required for
bidirectional traffic flow (e.g., auto-associate the MAC of the artifact with any pre‐
fixes assigned to or point to the artifact in the native table).

• The vendor agent should support OpenFlow-ARP-related functionality so that de‐
vices in the OpenFlow domain can discover the MAC of the artifact.

• The native port can be implemented as an internal loopback port (preferable) or as
an external loopback (i.e., a symmetric solution is preferred over an asymmetric
solution).

• It will be preferable if certain applications, such as topology discovery by LLDP,
exclude the native artifacts/ports. (This is a prescribed operational behavior.)

The integrated hybrid should support virtual interfaces (e.g., sharing a link down to the
level of a VLAN tag). External/native features of any shared link (such as a ports
supporting a VLAN trunk) should work across traffic from both domains (where the
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25. Customers have requested the ability to use QoS on the physical port in a way that prevents VLANs from one
or the other domain (native or OF) from consuming an inordinate amount of bandwidth on a shared link.

domains operate in parallel but do not cross-connect)25. Further, native interface fea‐
tures may be applied at the artifact (that connects the domains), but there is no as‐
sumption that they have to be supported. This behavior is vendor dependent, and sup‐
port, consequences (unexpected behaviors), and ordering of these features need to be
clearly defined by the vendor to their customers.

Conclusions
OpenFlow (and its accompanying standards organization, the ONF) is credited with
starting the discussion of SDN and providing the first vestige of modern SDN control:
a centralized point of control, a northbound API that exposes topology, path compu‐
tation, and provisioning services to an application above the controller, as well as a
standardized southbound protocol for instantiating forwarding state on a multivendor
infrastructure.

Unfortunately, the OpenFlow architecture does not provide a standardized northbound
API, nor does it provide a standardized east-west state distribution protocol that allows
both application portability and controller vendor interoperability. Standardization
may progress through the newly spawned Architecture Working Group, or even the
new open source organization OpenDaylight Project.

OpenFlow provides a great deal of flow/traffic control for those platforms that can
exploit the full set of OpenFlow primitives. The ONF has spawned a working group to
address the description/discovery of the capabilities of vendor hardware implementa‐
tions as they apply to the use of the primitive set to implement well-known network
application models.

Even though there are questions about the level of abstraction implemented by Open‐
Flow and whether its eventual API represents a complete SDN API, there is interest in
its application, and ongoing efforts around hybrid operation may make it easier to in‐
tegrate its capability for matching/qualifying traffic in traditional/distributed networks
or at the borders between OpenFlow domains and native domains.
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CHAPTER 4

SDN Controllers

Introduction
The three most resonant concepts of SDN are programmability, the separation of the
control and data planes, and the management of ephemeral network state in a central‐
ized control model, regardless of the degree of centralization. Ultimately, these concepts
are embodied in an idealized SDN framework, much as we describe in detail later in
Chapter 9. The SDN controller is the embodiment of the idealized SDN framework, and
in most cases, is a reflection of the framework.

In theory, an SDN controller provides services that can realize a distributed control
plane, as well as abet the concepts of ephemeral state management and centralization.
In reality, any given instance of a controller will provide a slice or subset of this func‐
tionality, as well as its own take on these concepts. In this chapter, we will detail the most
popular SDN controller offerings both from commercial vendors, as well as from the
open source community. Throughout the chapter, we have included embedded graphics
of the idealized controller/framework that was just mentioned as a means to compare
and contrast the various implementations of controllers. We have also included text that
compares the controller type in the text to that ideal vision of a controller.

We would like to note that while it was our intention to be thorough
in describing the most popular controllers, we likely missed a few. We
also have detailed some commercial controller offerings, but likely
missed some here too. Any of these omissions, if they exist, were not
intentional, nor intended to indicate any preferences for one over the
other.
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General Concepts
An idealized controller is shown in Figure 4-1, which is an illustration replicated from
Chapter 9, but is repeated here for ease of reference. We will refer back to this figure
throughout the chapter in an effort to compare and contrast the different controller
offerings with each other.

Figure 4-1. Idealized controller/framework

The general description of an SDN controller is a software system or collection of sys‐
tems that together provides:

• Management of network state, and in some cases, the management and distribution
of this state, may involve a database. These databases serve as a repository for in‐
formation derived from the controlled network elements and related software as
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1. Some vendors provide both open source and commercial products.

2. http://www.uppersideconferences.com/sdnsummit2013/program-sdn-summit-2013.pdf

well as information controlled by SDN applications including network state, some
ephemeral configuration information, learned topology, and control session infor‐
mation). In some cases, the controller may have multiple, purpose-driven data
management processes (e.g., relational and nonrelational databases). In other cases,
other in-memory database strategies can be employed, too.

• A high-level data model that captures the relationships between managed resources,
policies and other services provided by the controller. In many cases, these data
models are built using the Yang modeling language.

• A modern, often RESTful (representational state transfer) application program‐
ming interface (API) is provided that exposes the controller services to an appli‐
cation. This facilitates most of the controller-to-application interaction. This in‐
terface is ideally rendered from the data model that describes the services and fea‐
tures of the controller. In some cases, the controller and its API are part of a de‐
velopment environment that generates the API code from the model. Some systems
go further and provide robust development environments that allow expansion of
core capabilities and subsequent publishing of APIs for new modules, including
those that support dynamic expansion of controller capabilities:

• A secure TCP control session between controller and the associated agents in the
network elements

• A standards-based protocol for the provisioning of application-driven network
state on network elements

• A device, topology, and service discovery mechanism; a path computation system;
and potentially other network-centric or resource-centric information services

The current landscape of controllers includes the commercial products of VMware
(vCloud/vSphere), Nicira (NVP), NEC (Trema), Big Switch Networks (Floodlight/
BNC), and Juniper/Contrail. It also includes a number of open source controllers.1

Besides the use of OpenFlow and proprietary protocols, there are SDN controllers that
leverage IP/MPLS network functionality to create MPLS VPNs as a layer 3-over-layer
3 tenant separation model for data center or MPLS LSPs for overlays in the WAN.

We cannot ignore the assertions that NETCONF-based controllers2 can almost be in‐
distinguishable from network management solutions, or that Radius/Diameter-based
controllers such as PCRF and/or TDF, in mobile environments, are also SDN controllers.
This is true particularly as their southbound protocols become more independent and
capable of creating ephemeral network/configuration state.
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As we discussed earlier in this book, the original SDN application of data center or‐
chestration spawned SDN controllers as part of an integrated solution. It was this use
case that focused on the management of data center resources such as compute, storage,
and virtual machine images, as well as network state. More recently, some SDN con‐
trollers began to emerge that specialized in the management of the network abstrac‐
tion and were coupled with the resource management required in data centers through
the support of open source APIs (OpenStack, Cloudstack). The driver for this second
wave of controllers is the potential expansion of SDN applications out of the data center
and into other areas of the network where the management of virtual resources like
processing and storage does not have to be so tightly coupled in a solution.

The growth in the data center sector of networking has also introduced a great number
of new network elements centered on the hypervisor switch/router/bridge construct.
This includes the network service virtualization explored in a later chapter. Network
service virtualization, sometimes referred to as Network Functions Virtualization
(NFV), will add even more of these elements to the next generation network architec‐
ture, further emphasizing the need for a controller to operate and manage these things.
We will also discuss the interconnection or chaining of NFV.

Virtual switches or routers represent a lowest common denominator in the networking
environment and are generally capable of a smaller number of forwarding entries than
their dedicated, hardware-focused brethren. Although they may technically be able to
support large tables in a service VM, their real limits are in behaviors without the service
VM. In particular, that is the integrated table scale and management capability within
the hypervisor that is often implemented in dedicated hardware present only in purpose-
built routers or switches. The simpler hypervisor-based forwarding construct doesn’t
have room for the RIB/FIB combination present in a traditional purpose-built element.
This is the case in the distributed control paradigm, which needs assistance to boil down
the distributed network information to these few entries—either from a user-space agent
that is constructed as part of the host build process and run as a service VM on the host,
or from the SDN controller. In the latter case, this can be the SDN controller acting as
a proxy in a distributed environment or as flow provisioning agent in an administratively
dictated, centralized environment. In this way, the controller may front the management
layer of a network, traditionally exposed by a network OSS.

For the software switches/routers on hosts in a data center, the SDN controller is a critical
management interface. SDN controllers provide some management services (in addi‐
tion to provisioning and discovery), since they are responsible for associated state for
their ephemeral network entities (via the agent) like analytics and event notification. In
this aspect, SDN has the potential to revolutionize our view of network element man‐
agement (EMS).
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3. http://www.vmware.com

4. vCenter Server can run on bare metal or in a VM. When run in a VM, vCenter can take advantage of vSphere
high-availability features.

VMware
VMware provides a data center orchestration solution with a proprietary SDN con‐
troller and agent implementation that has become a de facto standard. VMware was one
of the genesis companies for cloud computing, founded in 1998.3 VMware provides a
suite of data-center−centric applications built around the ESX (ESXi for version 5.0 and
beyond) hypervisor (and hypervisor switch, the vSphere Distributed Switch [VDS]).
See Figure 4-2 for a rough sketch of VMware product relationships.

vSphere introduced the ESXi hypervisor (with version 5.x) to replace the older ESX
hypervisor, making it lighter/smaller (according to marketing pronouncements; ESXi
is 5% of the size of ESX) and operating-system independent. The change also adds a
web interface to the existing ESX management options of CLI, client API, and vCenter
visualization. It also eliminated a required guest VM (i.e., guest VM per host) for a
service console for local administration.

VDS is an abstraction (as a single logical switch) of what was previously a collection of
individual virtual switches (vSphere Standard Switch/es) from a management perspec‐
tive—allowing vCenter Server to act as a management/control point for all VDS in‐
stances (separating the management and data planes of individual VSSs).

Within VDS, VMware has abstractions of the physical card (vmnic), link properties
(e.g., teaming, failover, and load balancing—dvuplink), and networking attributes (e.g.,
VLAN assignment, traffic shaping, and security de facto dvportgroup) that are used by
the administrator as reusable configuration templates.

Once provisioned, the components necessary for network operation (the ESXi vswitch)
will continue to operate even if the vCenter Server fails/partitions from the network.4

Much of the HA scheme is managed within organizational clusters wherein a single
agent is elected as master of a fault domain and the others are slaves. This creates a very
scalable VM health-monitoring system that tolerates management communication
partition by using heartbeats through shared data stores.
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Figure 4-2. VMware product relationships (with vCenter Chargeback Collector as an
example of how Operations Management Suite would connect)

The aforementioned VMware applications are available in different bundles, exempli‐
fied by the vSphere/vCloud/vCenter Suite designed for IaaS applications, which in‐
cludes:
vSphere

Manages what is labeled “virtualized infrastructure” by VMware. This includes
managing the hypervisor integrated vswitch (from a networking perspective) as
well as the other, basic IaaS components—compute, storage, images, and services.
The suite uses an SQL Database (Microsoft or Oracle) for resource data storage.

vCloud Director and vCloud Connector
Primary application for compute, storage, image resource management, and public
cloud extension.

vCloud Networking and Security
Self-descriptive applications.

vCloud Automation Center
Provisioning assist for IT management.

76 | Chapter 4: SDN Controllers

http://www.it-ebooks.info/


5. http://cloudfoundry.com/

6. The environment is provided through a subsidiary: SpringSource.

7. http://www.osgi.org
8. http://www.hibernate.org

vCenter Site Recovery Manager
A replication manager for automated disaster recovery.

vCenter Operations Management Suite
Application monitoring, VM host and vSphere configuration and change manage‐
ment, discovery, charging, analytic, and alerting.

vFabric Application Director for Provisioning
Application management (primarily for multitiered applications, described in the
definition of degree of tenancy, and managing the dependencies).

In 2011, VMware launched an open source PaaS system called Cloud Foundry,5 which
offers a hosted service that runs on VMware.

The virtual switch in the hypervisor is programmed to create VxLAN tunnel overlays
(encapsulating layer 2 in layer 3), creating isolated tenant networks. VMware interacts
with its own virtual vswitch infrastructure through its own vSphere API and publishes
a vendor-consumable API that allows third-party infrastructure (routers, switches, and
appliances) to react to vCenter parameterized event triggers (e.g., mapping the trigger
and its parameters to a vendor-specific configuration change).

One of the strengths of VMware vSphere is the development environment that allows
third parties to develop hypervisor and/or user space service VM applications (e.g.,
firewalls, and anti-virus agents) that integrate via the vSphere API.

The core of VMware solution is Java-centric, with the following features:

• HTTP REST-based API set oriented in expression toward the management of
resources

• Spring-based component framework6

• Open Services Gateway Initiative (OSGI) module framework7

• Publish/subscribe message bus based on JMS
• Hibernate8 DBMS interface (Hibernate is an object/relational mapping library that

allows a Java developer to create/retrieve a relational store of objects).

The Spring development environment allows for the flexible creation and linking of
objects (beans), declarative transaction and cache management and hooks to database
services. Spring also provides for the creation of RESTful endpoints and thus an auto-
API creation facility. Figure 4-3 shows the VMware/SpringSource relationship.
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Figure 4-3. Drawing of the VMware vCloud/SpringSource software development archi‐
tecture

When looking over the architecture just described, one of the first things that might be
apparent is the focus on integrated data center resource management (e.g., image, stor‐
age, and compute). From a controller standpoint, it’s important to note that the “con‐
troller” manages far more than just network state.

This is an important feature, as it can result in a unified and easy-to-operate solution;
however, this approach has resulted in integration issues with other solution pieces such
as data center switches, routers and appliances.
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9. Licensing has had per socket and VRAM entitlement fees, with additional fees for applications like Site
Recovery Manager. While this may be a “hearsay” observation, we have interviewed a large number of
customers.

One of the primary detractions commonly cited with VMware is its cost.9 This of course
varies across customers, but open source offerings are (apparently) free by comparison.
Even so-called enterprise versions of open source offerings are often less expensive than
the equivalent offering. Other perhaps less immediately important considerations of
this solution is its inherent scalability, which, like the price, is often something large-
scale users complain about. The mapping and encapsulation data of the VxLAN overlay
does not have a standardized control plane for state distribution, resulting in operations
that resemble manual (or scripted) configuration and manipulation. Finally, the re‐
quirement to use multicast in the underlay to support flooding can be a problem, de‐
pending on what sort of underlay one deploys.

These points are not intended to imply that VMware has scaling problems, but rather
that one of the facts of deploying commercial solutions is that you are more than likely
going to have more than one server/controller, and the architecture has to either assume
independence (i.e., a single monolith that operates as an autonomous unit) or support
a federated model (i.e., clusters of servers working in conjunction to share state) in
operation.

Table 4-1. VDS scalabilityabc

VDS Properties 5.0 Limit 5.1 Limit

Number of VDS per vCenter Server 32 128

Number of Static Port Groups per vCenter Server 5,000 10,000

Number of Distributed Ports per vCenter Server 30,000 60,000

Number of Hosts per VDS 350 500
a http://www.vmware.com/pdf/vsphere5/r50/vsphere-50-configuration-maximums.pdf
b http://www.vmware.com/products/datacenter-virtualization/vsphere/distributed-switch.html
c https://www.vmware.com/pdf/vsphere5/r51/vsphere-51-configuration-maximums.pdf

Nicira
Nicira was founded in 2007 and as such is considered a later arrival to the SDN mar‐
ketplace than VMware. Nicira’s network virtualization platform (NVP) was released in
2011 and it is not the suite of resource management applications that comprises
VMware; instead, it is more of a classic network controller, that is, where network is the
resource managed. NVP now works in conjunction with the other cloud virtualization
services for compute, storage, and image management.
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10. http://openvswitch.org

11. ESX, ESXi, Xen, Xen Server, KVM, and HyperV.

12. https://datatracker.ietf.org/doc/draft-pfaff-ovsdb-proto/

NVP works with Open vSwitch (OVS).10 OVS is the hypervisor softswitch controlled
by the NVP controller cluster. This is good news because OVS is supported in just about
every hypervisor11 and is actually the basis of the switching in some commercial network
hardware. As a further advantage, OVS is shipping as part of the Linux 3.3 build.

Until the relatively recent introduction of NXP, which is considered the first step in
merging VMware and Nicira functionality, Nicira required a helper VM called Nicira
OVS vApp for the VMware ESXi hypervisor in order to operate correctly. This vApp is
mated to each ESXi hypervisor instance when the instance is deployed.

Though Nicira is a founding ONF member and its principals have backgrounds in the
development of OpenFlow, Nicira only uses OpenFlow to a small degree. This is unlike
a number of the other original SDN controller offerings. Most of the programming of
OVS is achieved with a database-like protocol called the Open vSwitch Data Base Man‐
agement Protocol (OVSDB).12 OVSDB provides a stronger management interface to
the hypervisor switch/element for programming tunnels, QoS, and other deeper man‐
agement tasks for which OpenFlow had no capability when open vswitch was developed.

OVSDB characteristics include the following:

• JSON used for schema format (OVSDB is schema-driven) and OVSDB wire
protocol

• Transactional
• No-SQL
• Persistency
• Monitoring capability (alerting similar to pub-sub mechanisms)
• Stores both provisioning and operational state

The Nicira NVP controller (Figure 4-4) is a cluster of generally three servers that use
database synchronization to share state. Nicira has a service node concept that is used
to offload various processes from the hypervisor nodes. Broadcast, multicast, and un‐
known unicast traffic flow are processed via the service node (IPSec tunnel termination
happens here as well). This construct can also be used for inter-hypervisor traffic han‐
dling and as a termination point for inter-domain (or multidomain) inter-connect.
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Figure 4-4. NVP OVSDB interactions with virtual switches and third-party hardware

A layer 2 or layer 3 gateway product converts Nicira STT tunnel overlays into VLANs
(layer 2), layer 2-to-layer 2 connectivity (VLAN to VLAN), or provides NAT-like func‐
tionality to advertise a tenant network (a private network address space) into a public
address space. See Figure 4-5 for a sketch of the NVP component relationships.

OVS, the gateways, and the service nodes support redundant controller connections for
high availability. NVP Manager is the management server with a basic web interface
used mainly to troubleshoot and verify connections. The web UI essentially uses all the
REST API calls on the backend for everything you do within it manually. For application
developers, NVP offers a RESTful API interface, albeit a proprietary one.
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Figure 4-5. Nicira SDN Controller components

Relationship to the idealized SDN framework

Figure 4-6 illustrates the relationship of the VMware/Nicira controller’s components to
the idealized SDN framework. In particular, the Nicira controller provides a variety of
RESTful northbound programmable APIs, network orchestration functions in the way
of allowing a user to create a network overlay and link it to other management elements
from vCenter/vCloudDirector, VxLAN, STT and OpenFlow southbound encapsulation
capabilities, and OVSDB programmability in support of configuration of southbound
OVS entities.
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13. http://blogs.vmware.com/console/2012/07/vmware-and-nicira-advancing-the-software-defined-
datacenter.html

14. VMware blends in Nicira SDN technology, reveals public cloud plans.

15. http://static.usenix.org/events/osdi10/tech/full_papers/Koponen.pdf

Figure 4-6. VMware/Nicira portfolio capabilities (against an idealized controller
framework)

VMware/Nicira
Due to the acquisition of Nicira by VMware,13 both of their products are now linked in
discussion and in the marketplace. Though developed as separate products, they are
merging14 quickly into a seamless solution. Both Nicira and VMware products provide
proprietary northbound application programming interfaces and use proprietary
southbound interfaces/protocols that allow for direct interaction with network elements
both real and virtual.

Nicira supports an OpenStack plug-in to broaden its capabilities in data center orches‐
tration or resource management.

OpenFlow-Related
Most open source SDN controllers revolve around the OpenFlow protocol due to having
roots in the Onix design (Figure 4-7),15 while only some of the commercial products
use the protocol exclusively. In fact, some use it in conjunction with other protocols.
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Figure 4-7. The Onix controller model

Unlike the VMware/Nicira solution or the L3VPN/PCE solutions that follow, OpenFlow
solutions don’t require any additional packet encapsulation or gateway. Although hybrid
operation on some elements in the network will be required to interface OpenFlow and
non-OpenFlow networks. This is in fact, growing to be a widely desired deployment
model.

Unless otherwise stated, the open source OpenFlow controller solutions use memory
resident or in-memory databases for state storage.
Relationship to the idealized SDN framework

Figure 4-7 illustrates the relationship of, generally, any open source controller’s com‐
ponents to the idealized SDN framework. Since most controllers have been based on
the Onix code and architecture, they all exhibit similar relationships to the idealized
SDN framework. This is changing slowly as splinter projects evolve, but with the ex‐
ception of the Floodlight controller that we will discuss later in the chapter, the premise
that they all exhibit similar relationships still generally holds true.

The Onix controller model first relates to the idealized SDN framework in that it
provides a variety of northbound RESTful interfaces. These can be used to program,
interrogate, and configure the controller’s numerous functions, such as basic controller
functionality, flow and forwarding entry programming, and topology. All of these con‐
trollers support some version of the OpenFlow protocol up to and including the latest
1.3 specification, as well as many extensions to the protocol in order to extend the basic
capabilities of the protocol. Also note that while not called out directly, all Onix-based
controllers utilize in-memory database concepts for state management. Figure 4-8 il‐
lustrates the relationship of the generalized open source OpenFlow controller’s com‐
ponents to the idealized SDN framework.

84 | Chapter 4: SDN Controllers

http://www.it-ebooks.info/


Figure 4-8. Figure Open Source OpenFlow controller capabilities (against an idealized
controller framework).Onix capabilities (against an idealized controller framework)

Mininet
Before introducing some of the popular Onix-based SDN controllers, we should take
some time to describe Mininet, which is a network emulator that simulates a collection
of end-hosts, switches, routers, and links on a single Linux kernel. Each of these elements
is referred to as a “host.” It uses lightweight virtualization to make a single system look
like a complete network, running the same kernel, system, and user code. Mininet is
important to the open source SDN community as it is commonly used as a simulation,
verification, testing tool, and resource. Mininet is an open source project hosted on
GitHub. If you are interested in checking out the freely available source code, scripts,
and documentation, refer to GitHub.
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A Mininet host behaves just like an actual real machine and generally runs the same
code—or at least can. In this way, a Mininet host represents a shell of a machine that
arbitrary programs can be plugged into and run. These custom programs can send,
receive, and process packets through what to the program appears to be a real Ethernet
but is actually a virtual switch/interface. Packets are processed by virtual switches, which
to the Mininet hosts appear to be a real Ethernet switch or router, depending on how
they are configured. In fact, commercial versions of Mininet switches such as from Cisco
and others are available that fairly accurately emulate key switch characteristics of their
commercial, purpose-built switches such as queue depth, processing discipline, and
policing processing. One very cool side effect of this approach is that the measured
performance of a Mininet-hosted network often should approach that of actual (non-
emulated) switches, routers, and hosts.

Figure 4-9 illustates a simple Mininet network comprised of three hosts, a virtual Open‐
Flow switch, and an OpenFlow controller. All components are connected over virtual
Ethernet links that are then assigned private net-10 IP addresses for reachability. As
mentioned, Mininet supports very complex topologies of nearly arbitrary size and or‐
dering, so one could, for example, copy and paste the switch and its attached hosts in
the configuration, rename them, and attach the new switch to the existing one, and
quickly have a network comprised of two switches and six hosts, and so on.

One reason Mininet is widely used for experimentation is that it allows you to create
custom topologies, many of which have been demonstrated as being quite complex and
realistic, such as larger, Internet-like topologies that can be used for BGP research.
Another cool feature of Mininet is that it allows for the full customization of packet
forwarding. As mentioned, many examples exist of host programs that approximate
commercially available switches. In addition to those, some new and innovative ex‐
periments have been performed using hosts that are programmable using the OpenFlow
protocol. It is these that have been used with the Onix-based controllers we will now
discuss.
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16. http://yuba.stanford.edu/~nickm/papers/p105-v38n3u-mckeownA4.pdf

17. Both NOX and POX information can be accessed via http://www.noxrepo.org/forum/.

18. http://onlab.us/tools.html

Figure 4-9. A simple example Mininet network

NOX/POX
According to the NOX/POX website,16 NOX17 was developed by Nicira and donated to
the research community and hence becoming open source in 2008. This move in fact
made it one of the first open source OpenFlow controllers. It was subsequently extended
and supported via ON.LAB18 activity at Stanford University with major contributions
from UC Berkeley and ICSI. NOX provides a C++ API to OpenFlow (OF v1.0) and an
asynchronous, event-based programming model.

NOX is both a primordial controller and a component-based framework for developing
SDN applications. It provides support modules specific to OpenFlow but can and has
been extended. The NOX core provides helper methods and APIs for interacting with
OpenFlow switches, including a connection handler and event engine. Additional
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19. http://yuba.stanford.edu/~casado/nox-ccr-final.pdf

components that leverage that API are available, including host tracking, routing, top‐
ology (LLDP), and a Python interface implemented as a wrapper for the component
API, as shown in Figure 4-10.

Figure 4-10. NOX architecture

NOX is often used in academic network research to develop SDN applications such as
network protocol research. One really cool side effect of its widespread academic use is
that example code is available for emulating a learning switch and a network-wide
switch, which can be used as starter code for various programming projects and ex‐
perimentation.

Some popular NOX applications are SANE and Ethane. SANE is an approach to rep‐
resenting the network as a filesystem. Ethane is a Stanford University research appli‐
cation for centralized, network-wide security at the level of a traditional access control
list. Both demonstrated the efficiency of SDN by reducing the lines of code required
significantly19 to implement these functions that took significantly more code to im‐
plement similar functions in the past. Based on this success, researchers have been
demonstrating MPLS-like applications on top of a NOX core.
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20. A new fork of NOX that is C++ only was created.

21. http://trema.github.com/trema/

22. https://github.com/trema/apps

23. https://github.com/trema/trema-edge

POX is the newer, Python-based version of NOX (or NOX in Python). The idea behind
its development was to return NOX to its C++ roots20 and develop a separate Python-
based platform (Python 2.7). It has a high-level SDN API including a query-able top‐
ology graph and support for virtualization.

POX claims the following advantages over NOX:

• POX has a Pythonic OpenFlow interface.
• POX has reusable sample components for path selection, topology discovery, and

so on.
• POX runs anywhere and can be bundled with install-free PyPy runtime for easy

deployment.
• POX specifically targets Linux, Mac OS, and Windows.
• POX supports the same GUI and visualization tools as NOX.
• POX performs well compared to NOX applications written in Python.

NOX and POX currently communicate with OpenFlow v1.0 switches and include spe‐
cial support for Open vSwitch.

Trema
Trema21 is an OpenFlow programming framework for developing an OpenFlow con‐
troller that was originally developed (and supported) by NEC with subsequent open
source contributions (under a GPLv2 scheme).

Unlike the more conventional OpenFlow-centric controllers that preceded it, the Trema
model provides basic infrastructure services as part of its core modules that support (in
turn) the development of user modules (Trema apps22). Developers can create their user
modules in Ruby or C (the latter is recommended when speed of execution becomes a
concern).

The main API the Trema core modules provide to an application is a simple, non-
abstracted OpenFlow driver (an interface to handle all OpenFlow messages). Trema
now supports OpenFlow version 1.3.X via a repository called TremaEdge.23

Trema does not offer a NETCONF driver that would enable support of of-config.
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24. There was some discussion of an SQLite interface for Trema.

In essence, a Trema OpenFlow Controller is an extensible set of Ruby scripts. Developers
can individualize or enhance the base controller functionality (class object) by defining
their own controller subclass object and embellishing it with additional message han‐
dlers.

The base controller design is event-driven (dispatch via retrospection/naming conven‐
tion) and is often (favorably by Trema advocates) compared to the explicit handler
dispatch paradigm of other open source products.

In addition, the core modules provide a message bus (IPC mechanism via Messenger)
that allows the applications/user_modules to communicate with each other and core
modules (originally in a point-to-point fashion, but migrating to a publish/subscribe
model), as shown in Figure 4-11.

Other core modules include timer and logging libraries, a packet parser library, and
hash-table and linked-list structure libraries.

Figure 4-11. Trema core/user module relationships

The Trema core does not provide any state management or database storage structure
(these are contained in the Trema apps and could be a default of memory-only storage
using the data structure libraries).24
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25. The entire environment can be run on a laptop, including the emulated network/switches.

26. https://github.com/nec-openstack/quantum-openflow-plugin

The infrastructure provides a command-line interface (CLI) and configuration filesys‐
tem for configuring and controlling applications (resolving dependencies at load-time),
managing messaging and filters, and configuring virtual networks—via Network Do‐
main Specific Language (DSL, a Trema-specific configuration language).

The appeal of Trema is that it is an all-in-one, simple, modular, rapid prototype and
development environment that yields results with a smaller codebase. The development
environment also includes network/host emulators and debugging tools (integrated
unit testing, packet generation/Tremashark/Wireshark).25 The Trema applications/
user_modules include a topology discovery/management unit (libtopology), a Flow/
Path management module (libpath), a load balancing switch module and a sliceable
switch abstraction (that allows the management of multiple OpenFlow switches). There
is also an OpenStack Quantum plug-in available for the sliceable switch abstraction.26

A Trema-based OpenFlow controller can interoperate with any element agent that sup‐
ports OpenFlow (OF version compatibility aside) and doesn’t require a specific agent,
though one of the apps developed for Trema is a software OpenFlow switch (positioned
in various presentations as simpler than OVS). Figure 4-12 illustrates the Trema
architecture.

Figure 4-12. Trema architecture and API interfaces
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27. http://www.osrg.net/ryu/

The individual user modules (Trema applications) publish RESTful interfaces. The
combination of modularity and per-module (or per-application service) APIs, make
Trema more than a typical controller (with a monolithic API for all its services). Trema
literature refers to Trema as a framework. This idea is expanded upon in a later chapter.

Ryu
Ryu27 is a component-based, open source (supported by NTT Labs) framework imple‐
mented entirely in Python (Figure 4-13). The Ryu messaging service does support com‐
ponents developed in other languages.

Components include an OpenFlow wire protocol support (up through version 1.3 of
OF-wire including Nicira extensions), event management, messaging, in-memory state
management, application management, infrastructure services and a series of reusable
libraries (e.g., NETCONF library, sFlow/Netflow library).

Additionally, applications like Snort, a layer 2 switch, GRE tunnel abstractions, VRRP,
as well as services (e.g., topology and statistics) are available.

At the API layer, Ryu has an Openstack Quantum plug-in that supports both GRE based
overlay and VLAN configurations.

Ryu also supports a REST interface to its OpenFlow operations.

Figure 4-13. Ryu architecture, applications (non-exhaustive), and APIs
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28. http://www.projectfloodlight.org/floodlight/

29. While our focus is on the very familiar open source Floodlight, for the sake of comparison, the commercial
BNC is also weighed. With BNC, BigSwitch offers virtualization applications and its BigTap application(s).

30. This is not an exhaustive list of BNS commercial applications (but critical ones to compare it to the idealized
controller).

31. In their commercial offering, Big Switch Networks combines the support of a NoSQL distributed database,
publish/subscribe support for state change notification, and other tooling to provide horizontal scaling and
high availability. This is a fundamental difference between commercial and open source offerings (in general).

A prototype component has been demonstrated that uses HBase for statistics storage,
including visualization and analysis via the stats component tools.

While Ryu supports high availability via a Zookeeper component, it does not yet support
a cooperative cluster of controllers.

Big Switch Networks/Floodlight
Floodlight28 is a very popular SDN controller contribution from Big Switch Networks
to the open source community. Floodlight is based on Beacon from Stanford University.
Floodlight is an Apache-licensed, Java-based OpenFlow controller (non-OSGI). The
architecture of Floodlight as well as the API interface is shared with Big Switch Network’s
commercial enterprise offering Big Network Controller (BNC).29

The Floodlight core architecture is modular, with components including topology
management, device management (MAC and IP tracking), path computation, infra‐
structure for web access (management), counter store (OpenFlow counters), and a
generalized storage abstraction for state storage (defaulted to memory at first, but de‐
veloped into both SQL and NoSQL backend storage abstractions for a third-party open
source storage solution).

These components are treated as loadable services with interfaces that export state. The
controller itself presents a set of extensible REST APIs as well as an event notification
system. The API allows applications to get and set this state of the controller, as well as
to subscribe to events emitted from the controller using Java Event Listeners, as shown
in Figure 4-14.30 These are all made available to the application developer in the typical
ways.31
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Figure 4-14. Floodlight/BNC combined architecture including open source components
(non-colored items are in the commercial BNC product); the BNC version of the con‐
troller has enhancements to many of the core functions

The core module called the Floodlight Provider, handles I/O from switches and trans‐
lates OpenFlow messages into Floodlight events, thus creating an event-driven, asyn‐
chronous application framework. Floodlight incorporates a threading model that allows
modules to share threads with other modules. Event handling within this structure
happens within the publishing module’s thread context. Synchronized locks protect
shared data. Component dependencies are resolved at load-time via configuration.

The topology manager uses LLDP (as does most OpenFlow switches) for the discovery
of both OpenFlow and non-OF endpoints.

There are also sample applications that include a learning switch (this is the OpenFlow
switch abstraction most developers customize or use in its native state), a hub applica‐
tion, and a static flow push application.

In addition, Floodlight offers an OpenStack Quantum plug-in.

The Floodlight OpenFlow controller can interoperate with any element agent that sup‐
ports OpenFlow (OF version compatibility aside, at the time of writing, support for both
of-config and version 1.3 of the wire protocol were roadmap items), but Big Switch also
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32. http://indigo.openflowhub.org

33. http://www.projectfloodlight.org/blog/2012/10/02/preview-of-indigo-v2-0-and-loxi/

34. https://github.com/mininet

35. http://www.restlets.org

36. http://www.nuagenetworks.net/press-releases/nuage-networks-introduces-2nd-generation-sdn-solution-for-
datacenter-networks-accelerating-the-move-to-business-cloud-services/

provides an open source agent (Indigo32) that has been incorporated into commercial
products. In addition, Big Switch has also provided Loxi, an open source OpenFlow
library generator, with multiple language support33 to address the problems of multi‐
version support in OpenFlow.

As a development environment, Floodlight is Java/Jython centric. A rich development
tool chain of build and debugging tools is available, including a packet streamer and
the aforementioned static flow pusher. In addition, Mininet34 can be used to do network
emulation, as we described earlier.

Because the architecture uses restlets,35 any module developed in this environment can
expose further REST APIs through an IRestAPI service. Big Switch has been actively
working on a data model compilation tool that converted Yang to REST, as an enhance‐
ment to the environment for both API publishing and data sharing. These enhance‐
ments can be used for a variety of new functions absent in the current controller, in‐
cluding state and configuration management.
Relationship to the idealized SDN framework

As we mentioned in the previous section, Floodlight is related to the base Onix controller
code in many ways and thus possesses many architectural similarities. As mentioned
earlier, most Onix-based controllers utilize in-memory database concepts for state
management, but Floodlight is the exception. Floodlight is the one Onix-based con‐
troller today that offers a component called BigDB. BigDB is a NoSQL, Cassandra-based
database that is used for storing a variety of things, including configuration and element
state.

When we look at the commercial superset of Floodlight (BNC) and its applications, its
coverage in comparison with the idealized controller rivals that of the VMware/Nicira
combination (in Figure 4-5). The combination supports a single, non-proprietary
southbound controller/agent (OpenFlow).

Layer 3 Centric
Controllers supporting L3VPN overlays such as Juniper Networks Contrail Systems
Controller, and L2VPN overlays such as Alcatel Lucent’s Nuage Controller36 are coming
to market that promote a virtual Provider Edge (vPE) concept. The virtualization of the
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37. http://www.trustedcomputinggroup.org/resources/tnc_ifmap_binding_for_soap_specification

PE function is an SDN application in its own right that creates both service or platform
virtualization. The addition of a controller construct aids in the automation of service
provisioning as well as providing centralized label distribution and other benefits that
may ease the control protocol burden on the virtualized PE.

There are also path computation engine (PCE) servers that are emerging as a potential
controllers or as enhancements to existing controllers for creating MPLS LSP overlays
in MPLS-enabled networks. These can be used to enable overlay abstractions and
source/destination routing in IP networks using MPLS labels without the need for the
traditional label distribution and tunnel/path signaling protocols such as LDP and
RSVP-TE.

L3VPN
The idea behind these offerings is that a VRF structure (familiar in L3VPN) can rep‐
resent a tenant and that the traditional tooling for L3VPNs (with some twists) can be
used to create overlays that use MPLS labels for the customer separation on the host,
service elements, and data center gateways.

This solution has the added advantage of potentially being theoretically easier to stitch
into existing customer VPNs at data center gateways—creating a convenient cloud
bursting application. This leverages the strength of the solution—that state of the net‐
work primitives used to implement the VRF/tenant is carried in standard BGP address
families.

In the case of Juniper Networks, which acquired its SDN controller technology from
Contrail Systems, the offering involves a controller that appears to be a virtualized route
reflector that supports an OpenStack API mapping to its internal service creation APIs.
The Juniper approach involves a high-level data model (originally envisioned to be IF-
MAP37 based) that self-generates and presents a REST API to SDN applications such as
the one shown in Figure 4-15. The figure demonstrates a data center orchestration
application that can be used to provision virtual routers on hosts to bind together the
overlay instances across the network underlay. A subset of the API overlaps the Open‐
Stack Quantum API and is used to orchestrate the entire system.

The controller is a multi-Node design comprised of multiple subsystems. The motiva‐
tion for this approach is to facilitate scalability, extensibility, and high availability. The
system supports potentially separable modules that can operate as individual virtual
machines in order to handle scale out server modules for analytics, configuration, and
control. As a brief simplification:
Analytics

Provides the query interface and storage interface for statistics/counter reporting
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Configuration
Provides the compiler that uses the high-level data model to convert API requests
for network actions into low-level data model for implementation via the control
code

Control
The BGP speaker for horizontal scale distribution between controllers (or admin‐
istrative domains) and the implementer of the low-level data model (L3VPN net‐
work primitives distributed via XMPP commands—VRFs, routes, policies/filters).
This server also collects statistics and other management information from the
agents it manages via the XMPP channel.

Figure 4-15. High-level operation of Juniper Networks Virtual Network System SDN
controller system

The Control Node uses BGP to distribute network state, presenting a standardized pro‐
tocol for horizontal scalability and the potential of multivendor interoperability. How‐
ever, it’s more useful in the short term for interoperability with existing BGP networks.
The architecture synthesizes experiences from more recent, public architecture projects
for handling large and volatile data stores and modular component communication.
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38. Juniper doesn’t insist on Cassandra as the NoSQL database in their architecture and publishes an API that
allows substitution.

39. http://redis.io/

40. zookeeper.apache.org

41. Similar to the Nicira/VMware ESX situation prior to merge in recently announced NSX product.

The Contrail solution leverages open source solutions internal to the system that are
proven. For example, for analytics data, most operational data, and the IF-MAP data
store, Cassandra38 was incorporated. Redis39 was employed as a pub-sub capable mes‐
saging system between components/applications. It should be noted that Redis was
originally sponsored by VMware. Zookeeper40 is used in the discovery and management
of elements via their agents.

Like all SDN controllers, the Juniper solution requires a paired agent in the network
elements, regardless of whether they are real devices or virtualized versions operating
in a VM. In the latter case, it’s a hypervisor-resident vRouter combined with a user space
VM (vRouter Agent).41 In the case of the former, configuration via Netconf, XMPP, and
the standard BGP protocol are used for communication.

The communication/messaging between Control Node and vRouter Agent is intended
to be an open standard using XMPP as the bearer channel. The XMPP protocol is a
standard, but only defines the transport of a “container” of information. The explicit
messaging contained within this container needs to be fully documented to ensure in‐
teroperability in the future.

Several RFCs have been submitted for this operational paradigm. These cover how the
systems operate for unicast, multicast, and the application of policy/ACLs:

• http://tools.ietf.org/html/draft-marques-l3vpn-end-system-05
• http://tools.ietf.org/html/draft-marques-sdnp-flow-spec-01
• http://tools.ietf.org/html/draft-marques-l3vpn-mcast-edge-01

An additional RFC has been submitted for the IF-MAP schema for transfer of non-
operational state:

• http://tools.ietf.org/html/draft-marques-sndp-l3vpn-schema-00
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The vRouter Agent converts XMPP control messages into VRF instantiations repre‐
senting the tenants and programs the appropriate FIB entries for these entities in the
hypervisor resident vRouter forwarding plane, illustrated in Figures 4-16 and 4-17.

The implementation uses IP unnumbered interface structures that leverage a loopback
to identify the host physical IP address and to conserve IP addresses. This also provides
multitenant isolation via MPLS labels supporting MPLS in GRE or MPLS in VxLAN
encapsulations. The solution does not require support of MPLS switching in the transit
network. Like the VMware/Nicira solution(s), this particular solution provides a
software-based gateway to interface with devices that do not support their agent.

Figure 4-16. Interaction between controller and Juniper Networks vRouter
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Figure 4-17. Multi-tenancy in Juniper Networks vRouter

Relationship to the idealized SDN framework

Figure 4-18 maps the relationship of the Juniper Contrail Controller’s components to
the idealized SDN framework, with the areas highlighted that the controller implements.
In this case, the platform implements a RESTful northbound API that applications and
orchestrators can program to, including the OpenStack API integration. There are also
integrated HA/clustering and both in-memory and noSQL state storage capabilities. In
terms of the southbound protocols, we mentioned that XMPP was used as a carrier
channel between the controller and virtual routers, but additional south bound proto‐
cols such as BGP are implemented as well.
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Figure 4-18. Contrail VNS capabilities (against an idealized controller framework)

Path Computation Element Server
RSVP-TE problem statement

In an RSVP-TE network, TE LSPs are signaled based on two criteria: desired bandwidth
(and a few other constraints) and the available bandwidth at that instant in time the LSP
is signaled within in the network.

The issue then is that when multiple LSPs (possibly originating at different LSRs in the
network) signal TE LSPs simultaneously, each is vying for the same resource (i.e., a
particular node, link, or fragment of bandwidth therein). When this happens, the LSP
setup and hold priorities must be invoked to provide precedence to the LSPs. Otherwise,
it would be solely first-come, first-served, making the signaling very nondeterministic.
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Instead, when an LSP is signaled and others already exist, LSP preemption is used to
preempt those existing LSPs in favor of more preferred ones.

Even with this mechanism in place, the sequence in which different ingress routers
signal the LSPs determine the actual selected paths under normal and heavy load con‐
ditions.

Imagine two sets of LSPs, two with priority 1 (call them A and B) and two with priority
2 (call them C and D). Now imagine that enough bandwidth only exists for one LSP at
a particular node. So if A and B are signaled, only one of A or B will be in place, depending
on which went first. Now when C and D are signaled, the first one signaled will preempt
A or B (whichever remained), but then the last one will remain. If we changed the order
of which one signaled first, a different outcome would result.

What has happened is that the combination of LSP priorities and pre-emption are cou‐
pled with path selection at each ingress router.

In practice, this result is more or less as desired; however, this behavior makes it difficult
to model the true behavior of a network a priori due to this nondeterministic behavior.
Bin-packing

A RSVP LSP gets signaled successfully if there is sufficient bandwidth along its complete
path. Many times it is not possible to find such a path in the network, even though
overall the network is not running hot.

Figure 4-19. Simple TE network

In Figure 4-19, the numbers in Gb represent the bandwidth available on the links. If
one wanted to setup a 4 Gb LSP from R1 to R5, then that setup would fail, because the
link R3 to R5 has only 3 Gb available. However the sum of R3-R5 bandwidth and R3-
R4-R5 bandwidth is 5Gb (3+2). Thus, there is bandwidth available in the network, but
due to the nature of RSVP signaling, one cannot use that available bandwidth.

Thus, the bin-packing problem is “how do we maximally use the available network
bandwidth?”
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Deadlock

Additionally, deadlock or poor utilization can occur if LSP priorities are not used or if
LSPs with the same priority collide. In Figure 4-19, if R1 tried to signal a 3 GB LSP to
R5 (via R1-R2-R3-R5) and R2 tried to signal a 2GB LSP to R5 (via R2-R3-R5), then only
one will succeed. If R2 succeeded, then R1 will be unable to find a path to R5.
The PCE Solution

Prior to the evolution of PCE, network operators addressed these problems through the
use of complex planning tools to figure out the correct set of LSP priorities to get the
network behavior they desired and managed the onerous task of coordinating the con‐
figuration of those LSPs. The other alternate was to over-provision the network and not
worry about these complexities.

Path computation element (PCE) allows a network operator to delegate control of MPLS
label switched paths (LSPs) to an external controller.

When combined with BGP-LS’ active topology (discussed in Chapter 8), network oper‐
ators can leverage those (previously mentioned) complex tools with a greatly simplified
configuration step (via PCE) to address these problems (in near real time).

There are multiple components of the PCE environment: a PCE server, a PCE client
(PCC), and the PCE Protocol that is the protocol for data exchange between the PCE
server and PCC.

PCE has evolved through several phases in which:

• The server manages pre-configured LSPs in a stateless manner.
• The server manages pre-configured LSPs stateless fashion.
• The server manages pre-configured and dynamically created LSPs in a stateful way.

The PCE server provides three fundamental services: path computation, state mainte‐
nance, and infrastructure and protocol support. The PCE server uses the PCE Protocol
in order to convey this information to network elements or PCCs. Ideally, the PCE server
is a consumer of active topology. Active topology is derived at least in part from the
BGP-TE/LS protocol, although as well as other sources such as routing protocol updates,
the new I2RS general topology, and ALTO servers.

As PCE servers evolve, the algorithm for path computation should be loosely coupled
to the provisioning agent through a core API, allowing users to substitute their own
algorithms for those provided by vendors. This is an important advance because these
replacement algorithms now can be driven by the business practices and requirements
of individual customers, as well as be easily driven by third-party tools.
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Relationship to the idealized SDN framework

The PCE server or controller takes a noticeably narrow slice of the idealized SDN
framework, as shown in Figure 4-20. In doing so, it of course provides a RESTful north‐
bound API offering a myriad of programmability options but generally only interfaces
using a single southbound protocol (PCE-P). It is for this reason that we generally view
the PCE controller as being an adjunct to existing controllers, which can potentially
expand that base functionality greatly.

Figure 4-20. PCE server capabilities (against an idealized controller/framework)

The other components in this controller solution would be typical of an SDN controller
and would include infrastructure for state management, visualization, component
management, and a RESTful API for application interface, as shown in Figure 4-21. In
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terms of the APIs, these should include standard API conversions like an OpenStack
Quantum plug-in to facilitate seamless integration with orchestration engines.

Figure 4-21. PCE server components (non-exhaustive/conceptual)

The original application of a PCE server was the creation of inter-area MPLS-TE tunnels
with explicit paths. The motivation was simply to avoid the operational hurdles around
inter-provider operational management, which even today, still remains as a big issue.
The PCE server could act as an intermediate point that had sufficient visibility into each
provider’s networks to establish paths whose placement was more optimal than those
established using routing protocols that only had local visibility within each component
provider network. There are also compelling use cases in backbone bandwidth man‐
agement, such as more optimal bin packing in existing MPLS LSPs, as well as potential
use cases in access networks for things such as service management.

The MPLS Traffic Engineering Database (MPLS TED) was originally distributed as
extensions to the IGP database in traditional IP/MPLS networks. Typically, this distri‐
bution terminates at area borders, meaning that multiarea tunnels are created with an
explicit path only to the border of the area of the tunnel head end. At the border point,
a loose hop is specified in the ERO, as exact path information is not available. Often this
results in a suboptimal path. As a solution to this problem, BGP-TE/LS allows the export
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42. http://datatracker.ietf.org/doc/draft-previdi-filsfils-isis-segment-routing/

43. Arguably, the reduction of complexity in distributed control plane paradigms (at least session-oriented label
distribution) is an SDN application.

of the TED from an area to a central topology store via a specific BGP address family.
The central topology store could merge the area TEDs, allowing an offline application
with a more global view of the network topology to compute an explicit end-to-end
path.

Because MPLS LSPs provide an overlay using the MPLS encapsulation that is then used
to switch traffic based on the MPLS label, the PCE server can either by itself or in
conjunction with other SDN technologies function as an SDN controller (see
Figure 4-22). These MPLS LSPs are signaled from the “head end” node via RSVP-TE.
In this way, this PCE-based solution can signal, establish, and manage LSP tunnels that
cross administrative boundaries or just routing areas more optimally or simply differ‐
ently based on individual constraints that might be unavailable to the operator due to
the equipment not implementing it.

Another emerging use of the PCE server is related to segment routing.42 In a segment
routing scenario, the PCE server can create an LSP with a generalized ERO object that
is a label stack. This is achieved through programmatic control of the PCE server. The
PCC creates a forwarding entry for the destination that will impose a label stack that
can be used to mimic the functionality of an MPLS overlay (i.e., a single label stack) or
a traffic engineering (TE) tunnel (i.e., a multilabel stack) without creating any signaling
state in the network. Specifically, this can be achieved without the use of either the RSVP-
TE or LDP protocols.43
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Figure 4-22. PCE Server manipulates ERO of LSP originating at A to change explicit
path from terminating at Z to terminating at Y; BGP-TE/LS speakers provide redun‐
dant source of topology to PCE

Besides the obvious and compelling SDN application of this branch of PCE in network
simplification in order to allow a network administrator to manipulate the network as
an abstraction with less state being stored inside the core of the network, there is also
some potential application of this technology in service chaining.

The association of a local label space with node addresses and adjacencies such as anycast
loopback addresses drives the concept of service chaining using segment routing. These
label bindings are distributed as an extension to the ISIS protocol:

• Node segments represent an ECMP-aware shortest path.
• Adjacency segments allow the operator to express any explicit path.
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The PCE server can bind an action such as swap or pop to the label. Note that the default
operation being “swap” with the same label.

In Figure 4-23, a simple LSP is formed from A to D by imposing label stack 100 that
was allocated from the reserved label space. This label stack associates the label with D’s
loopback address—(i.e., the segment list is “100”). An explicit (RSVP-TE) path can be
dictated through the use of an adjacency label (e.g., 500 to represent the adjacency B-
F) in conjunction with the node label for D and B (e.g., 300) creating the segment list
and its imposed label stack (i.e., “300 500 100”).

Figure 4-23. Segment routing using a PCE server as SDN controller
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While extremely promising and interesting, this proposal is relatively new, and so several
aspects remain to be clarified.44

It should be noted that PCE servers are already available from Cisco Systems, which
acquired Cariden Technologies. Cariden announced a PCE server in 2012.45 Other ven‐
dors with varying solutions for how to acquire topology, how to do path computation,
and other technical aspects of the products are also working on PCE server solutions.
In addition to these commercial offerings, a number of service providers, including
Google, have indicated that they are likely to develop their own PCE servers independ‐
ently or in conjunction with vendors in order to implement their own policies and path
computation algorithms.

Plexxi
Plexxi Systems are based around the concept of affinity networking, offering a slightly
different kind of controller—a tightly coupled proprietary forwarding optimization al‐
gorithm and distribution system.

The Plexxi controller’s primary function is to gather information about affinities dy‐
namically from external systems or statically via manually created policies and then
translate this affinity information into forwarding topologies within the Plexxi network.
See Figure 4-24 for a sketch of the Plexxi Systems architecture.

The Plexxi physical topology is ring based, and affinities are matched to ring identifiers,
thus forming a tight bond between the overlay and underlay concepts. Some would say
this tight bond is more of a hybrid, or blending into a single network layer.
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Figure 4-24. Plexxi Systems architecture (source: Plexxi Systems)

These topologies manifest as a collection of forwarding rules pushed across the switches
within the controller’s domain. There are additional mechanisms in place that preserve
active topology on the switches if the controller(s) partition from the network.

The controller tasks are split between a controller and co-controller, where the central
controller maintains central policy and performs administrative and the algorithmic
fitting tasks, while the co-controller performs local forwarding table maintenance and
fast repair.

In addition to learning about and creating affinities, the controller provides interfaces
for operational and maintenance tasks. These interfaces include a REST API, a Jython
shell, and a GUI. The Jython shell has numerous pre-shipped commands for working
with the controller and the switches, however custom CLI commands can easily be
created with a bit of Python coding. The GUI employs the JIT/GWT to auto-create
interactive diagrams of the physical network and the affinities it supports.
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46. Database replication will enable (on Plexxi roadmap for 2013) configuration and state replication in multi‐
controller or redundant environments.

47. Plexxi offers comprehensive network design guidance and has a roadmap for larger scale and more complex
topologies.

The Plexxi topology and forwarding programming are part of a proprietary control
protocol (PSCP). The forwarding programming uses ActiveMQ and the controller is
based around PostgreSQL.46

The Plexxi control paradigm currently works only with Plexxi’s LightRail optical
switches.

Plexxi scale is up to 250 switches per ring per controller pair. Plexxi supports redundant
and multiring topologies for scale and the separation of maintenance domains.47

The Plexxi relationship to the idealized controller would be the same as others with a
proprietary southbound API (much like the Contrail VNS comparison in Figure 4-18),
with the notable exception that the affinity algorithms provide differentiation in top‐
ology and forwarding.

Plexxi Affinity
An affinity consists of one or two affinity groups and an affinity link between them. An
affinity group is a collection of endpoints, identified by MAC or IP address. An affinity
link is a policy construct describing a desired forwarding behavior between two affinity
groups or the forwarding behavior between endpoints within a single affinity group.

For instance, affinity group A can be a set of MAC addresses belonging to storage cluster
members. Affinity group B can be a pair of redundant storage controllers. An affinity
link between group A and group B can tell the controller to isolate this traffic in the
network. Affinity information can be harvested from any type of infrastructure system
through Plexxi connectors: IP PBXs, storage systems, WAN optimization systems, pri‐
vate cloud systems such as OpenStack, VMware deployments, and so on. In addition
to these, affinities can be derived from flow-monitoring systems that store sFlow, net‐
flow, or IPFIX data.

Cisco OnePK
The Cisco OnePK controller is a commercial controller that embodies the framework
concept by integrating multiple southbound protocol plug-ins, including an unusual
southbound protocol plug-in, the Cisco OnePK API.

The architecture is a Java-based OSGI framework that uses an in-memory state storage
model and provides a bidirectional (authenticated) REST interface. Clustering is
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supported using Infinispan and JBoss marshaling and transaction tools. See Figure 4-25
for a sketch of the Cisco OnePK controller concept.

Cisco claims the controller logic is capable of reconciling overlapping forwarding de‐
cisions from multiple applications and a service abstraction that allows troubleshooting
as well as capability discovery and mapping.

Figure 4-25. Cisco OnePK controller concept

While it’s not unusual for the major network equipment vendors to offer their customers
an SDK (a vendor-specific, network element programmability option that pre-dates
SDN), the Cisco controller implements this as a plug-in in the generalized framework
concept. This opens the door to the continued use of their SDK in an SDN solutions
environment (e.g., blending the OnePK API with OpenFlow) in places where the SDK
(or SDK apps on the controller) can add value.
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Relationship to the Idealized SDN Framework
The Cisco OnePK controller appears to be the best mapping of functionality within a
controller to the idealized SDN framework. It contains all aspects of the idealized con‐
troller in that it provides an extensible RESTful API, an integrated development envi‐
ronment, multiple computational engines, as well as different southbound protocols
through which it can be used to interface to what is likely the widest variety of network
devices real and virtual. The controller contains capabilities for both memory resident
and offline, and distributed state management and configuration storage. It also con‐
tains provisions for horizontal controller-to-controller communication and coordina‐
tion. Finally, in order to facilitate the Swiss Army knife of northbound and southbound
protocols, the controller implements an abstraction layer that facilitates the many-to-
many communication channels needed to program such a controller. It is this that really
differentiates it from the other controllers discussed in that it can be further extended
in the future with relative ease.

Based on these advantages, it is also no surprise that this controller is also used as the
new gold standard for open source SDN controllers, as evidenced by it being the basis
for the new OpenDaylight Project Linux Foundation consortium.

Conclusions
The term SDN controller can have many different meanings and thus exists in many
different forms today. Much of the meaning is derived from the network domain in
which the controller will operate, was derived from, and the strategy and protocol
choices used in that domain.

The current state of the SDN controller market is that, while there is an expectation of
standards-based behaviors whereby users often cite multivendor interoperability for
provisioning as a compelling feature of SDN, this is not always the case. This fact re‐
mains, for better or worse. Vendors may use proprietary techniques and protocols that
depend on the ubiquity of their products or the compelling nature of their applications
to create markets for their products. The latter is true because applications were origi‐
nally (and still are currently) closely bound to the controller in the SDN market through
use of non-standardized APIs.

Because of the controller/agent relationship and the reality that not all existing network
elements may support the agent daemon/process of the controller (that instantiates the
protocol that delivers the network state required to create the aforementioned network
abstractions), many controller product strategies also involve the use of host-based
gateway solutions. In these gateways, the agents transform the tenant overlay networks
into a common digestible format for non-controlled elements—typically turning the
tenant overlay networks into VLANs. This strategy allows the interoperation of the old
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48. This is not an exhaustive list and doesn’t include all currently available or historic SDN controller offerings.

and the new networks with the caveats that the software-based gateway may be of lower
packet processing capability—with a potential performance penalty.

The controllers surveyed48 have the following general attributes when considered as a
group:

• They provide various levels of development support—languages, tooling, etc.
• Commercial offerings tend to have proprietary interfaces but (as expected) offer

more robust storage and scale traits today.
• The evolution of network-state specific controllers versus integrated data center

solution controllers has led to new strategies for state storage in more recently
developed products (e.g., the use of NoSQL databases by Big Switch Networks),
messaging (e.g., Redis in the Juniper Networks solution), entity management (e.g.,
the use of Zookeeper). In the end, commercial offerings have to adopt a stance on
state sharing (either atomic operation or federation).

• All SDN controller solutions today have a very limited view of topology. This is
predominantly a single layer of the network or even only locally adjacent devices
such as the case when using LLDP for layer 2, or in the case of PCE, the BGP traffic-
engineering database.

• Few controllers support more than a single protocol driver for interaction with
clients/agents. Some OpenFlow open source controllers don’t support NETCONF
and thus can’t support of-config, for example.

• All controller solutions today have proprietary APIs for application interfaces. That
is, no standard northbound interface exists in reality, although some are attempting
to work on this problem such as the Open Daylight Project. Unfortunately the ONF
has resisted working in this area until very recently, but other standards organiza‐
tions such as the IETF and ETSI have begun work in this area. Also, the Open
DayLight Project will be producing the open source code that will represent a useful
and common implementation of such an interface, which may very well drive those
standards.

• At best, the present SDN controllers address scalability by supporting multicon‐
troller environments or with database synchronization and/or clustering strategies.
These strategies hamper interoperability between vendors with the exception of the
Juniper solution, which proposes the use of BGP for exchanging network state but
still requires adoption by other vendors.

In the OpenFlow environment, the horizontal and vertical scalability of open source
SDN controllers is questionable, since robust support of underlying DBMS backends
is fairly new. Many were designed originally to run with memory resident data only.
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That is, they were not designed to share memory resident state between clustered con‐
trollers unless they are architected specifically. Big Switch Networks may be an excep‐
tion, but many of their enhancements were reserved for their commercial offering.

Support for OpenFlow v1.3 is not yet universal. Most controllers and equipment ven‐
dors still only support OpenFlow 1.0. This can be an issue because a number of critical
updates were made to the protocol by 1.3. Furthermore, along the lines of support for
OpenFlow, many device vendors have implemented a number of vendor-proprietary
extensions to the protocol that not all controllers support. This further puts a dent into
interoperability of these solutions.

Most network-related discussions eventually come to the conclusion that networks are
about applications. In the case of the SDN controller, application portability and the
ecosystem that can be built around a controller strategy will ultimately decide on who
the commercial victor(s) are. If none is sufficient when it comes to controllers, then an
evolution in thinking about SDN and the controller paradigm may occur as well. This
may be happening in how the Cisco OnePK (and the Open Daylight Project) controller
has been created. Flexibility was absent from most controller architectures both in terms
of southbound protocol support and northbound application programmability.

There are some notable technologies or thought processes in the surveyed SDN con‐
trollers regarding application development:

• The Trema model introduces the idea of a framework, in that it originally provided
just a development core and each service module provided its own API that can
then be implemented by more components or end-user applications.

• Big Switch Network’s commercial product and potentially Floodlight, as well as the
Spring-based environment for VMware accentuate API development tooling, in
particular the ability to autogenerate APIs from modules or generate them from
data models that the modules manipulate.

• Juniper Networks refines the idea with the idea of compilation by invoking the SDN
as network compiler concept. This created high-level, user-friendly/app-friendly,
data models that translate into lower-level network strategy/protocol specific prim‐
itives (e.g., L3VPN VRFs, routes, and policies).

• Several vendors have strategies that acknowledge the need for separate servers for
basic functionality (even more so for long-term scalability) and potentially
application-specific database strategies. As we get to more recent offerings, many
are described as systems or clusters, which must define and address a consistency
philosophy.

We’ve seen that, as we survey across time, the best of ideas like these are culled or evolve,
and are then incorporated in new designs.
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CHAPTER 5

Network Programmability

Introduction
The concept of network programmability lies at the heart of one of the key tenets of
software-defined networks. The concept of programmability can exist in, or be a feature
of, a number of network devices and software components—and this is not a new con‐
cept, as network management has existed since the beginning of time for networked
devices. What differs now is in specifically how those devices—real or virtual—are not
only managed, but also interacted with. Regardless of the type of target, the goal is to
make it easily programmable and to facilitate a bidirectional channel of communication
between it and the other piece of software communicating with it. This forms what we
refer to as a tightly coupled feedback loop between these elements. This concept is in
fact quite different from the traditional network management paradigm, where the
manager and agent communicated in a relatively loose fashion with considerable lag
between operations—including cases where essentially no feedback existed.

In order to realize this new paradigm of communication and interaction, tightly cou‐
pled, bidirectional programmatic interfaces are needed. These interfaces also need to
be readily and rapidly implemented in software so as to encourage their use and ubiq‐
uitous deployment. These interfaces have been commonly referred to as application
friendly. These interfaces also need to be developed by communities of developers in
order to make them robust, secure, and widely used. This will lead to de facto stand‐
ardization and ultimately proper standardization. Interfaces need to provide self-
describing capabilities so that applications can easily and dynamically learn and un‐
derstand the capabilities of a network element without having to be recompiled. The
net effect then will be interfaces that one can safely code to and that are portable across
different controller platforms.

We will describe programmatic interfaces in detail in this chapter, as well as explain how
they can be instrumented in such a way as to facilitate this tightly coupled, bidirectional
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communications channel in order to form a feedback loop between the controller, the
network devices it controls, and ultimately the applications that need to interact with
both of these.

We should note that since the purpose of this chapter is to provide the reader with a
survey of available technologies, we do not intend to go into great detail explaining each
specific management interface. Instead, we will aim for a slightly higher-level view of
the important pros and cons of any given protocol or approach in an effort to show the
reader how it fits in (or doesn’t) into the SDN model of the world. We will, however,
provide the reader with references for further reading of such details.

The Management Interface
Management interfaces allow network operators to manage network devices in their
networks. These interfaces generally provide the operator with a consistent operational
view of a device, including its configuration and operational status. A management
interface typically consists of two key elements: a protocol and a message format spec‐
ification. In the case of the protocol, this describes the syntax and semantics associated
with sending or receiving specific messages that either the manager or network element
generates. These messages often contain commands, queries, or responses to earlier
queries. In some cases, these messages can be emitted without a direct query—as is the
case with events (notifications) that are emitted asynchronously in response to some
event within the network element. The other key element of a management interface is
the message format and the meaning of those messages. Some management interfaces
define a data model that can be used as a directory of information available to the
network operator. In some cases, these can also be used to describe how a manager
might construct (or order) queries or commands between it and the device. The data
model also typically describes the relationship between manageable objects within the
system. For example, the system’s name might be kept in an object called sysName and
associated with another object called sysUpTime indicating the length of time the system
has been running. Both of these objects would be related in that they are contained
within the parent object called system, which represents the entire system.

The Application-Network Divide
Until recently, most modern network elements (e.g., routers, switches, or firewalls)
supported a small set of traditional interfaces that were used to communicate with those
elements. These typically included a proprietary command-line interface (CLI), SNMP,
CORBA, and more recently, some form of NETCONF. These languages have a few key
traits in common. First, they are, generally speaking, very static in nature and require
a priori data model design and declaration. In practice, this means that code is often
generated from these interfaces, which are built directly into the firmware images exe‐
cuting on the network elements, as well as the management software (or applications).
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This meant that the interfaces used to converse with a network element had to be pre-
programmed rather than being learned on-the-fly. Second, the syntax of the languages
used to define the structure of messages and rules by which elements should handle
messages (i.e., read-only and read-write) are somewhat purpose-built for those man‐
agement interfaces. Third, these protocols often used binary encodings, meaning that
while they were compact on the wire, they were difficult to program, debug, and other‐
wise represent. Finally, the common practices around writing the syntactic modules
describing the schema of any one of these interfaces was often nonhierarchical, meaning
that it was difficult to navigate not only for applications, but also for humans trying to
find their way around the schema.

In most cases, an application that was allowed to have any sort of discourse with a
network element or its services was required to either communicate using one of these
protocols, or more commonly, had to communicate through a network management
element management system (EMS). The EMS acted as a proxy between the network
elements and the applications. Unfortunately, the EMS (or NMS) generally did not ex‐
pose the network elements or the services they provided in any sort of application-
friendly way, meaning that coding toward these interfaces and paradigms was cumber‐
some and ultimately resulted in long periods of time between an application signaling
its desire to do something and that something actually happening. This is in fact what
we call the application-network divide, illustrated in Figure 5-1.

Figure 5-1. The application-network divide

To this end, one answer is to use interfaces that are application-friendly RESTful (rep‐
resentational state transfer) interfaces. It happens that these interfaces are generally
defined using modern approaches such as JSON (JavaScript Object Notation). JSON
solves many of the shortcomings just described because its schema is defined using
human-readable XML, is self-referential, is hierarchical, and is something that is easily
built into Java applications—the most common application programming language of
the past decade. The code snippet here demonstrates a JSON example (other modern,
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application-friendly interfaces are Thrift and Google Buffers—we will describe these
and a few others later in this chapter):

<!DOCTYPE html>
<html>
<body>
<h2>
JSON Object Creation in JavaScript
</h2>
<p>

Name: <span id="jname"></span><br /> 

Age: <span id="jage"></span><br /> 

Address: <span id="jstreet"></span><br /> 

Phone: <span id="jphone"></span><br /> 
</p>
<script>

var JSONObject= {

"name":"John Johnson",

"street":"Oslo West 555", 

"age":33,

"phone":"5551234567"};

document.getElementById("jname").innerHTML=JSONObject.name 
document.getElementById("jage").innerHTML=JSONObject.age 
document.getElementById("jstreet").innerHTML=JSONObject.street 
document.getElementById("jphone").innerHTML=JSONObject.phone 

</script>

</body>

</html>

Another of the key tenets of SDN technology is to facilitate a much more closely coupled
interaction between applications and the network elements that support them. Specif‐
ically, the cycle of provisioning, analysis, and optimization represent three common and
general actions that were often considered as independent in the past. We suggest that
in an SDN approach, these be considered together. This is illustrated in Figure 5-2. The
act of provisioning is that whereby an application indicates a desire to do something,
change something, or generally affect the behavior of the network. The analysis phase
is one of monitoring or gathering feedback from network elements as to their
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operational, fault, capacity, or otherwise well-being states. This includes, for example,
statistics gathering or reception of status notifications. Finally, optimization is the last
stage that is accomplished using the information gathered from the analysis phase and
possibly causes another act of provisioning to take place (potentially through some
embedded or external policy engine interaction) in order for the system to adjust itself
in order to better operate. The tighter this feedback loop can be implemented, the
quicker the entire system can potentially adjust itself to change and potentially operate
more optimally.

Earlier, we described how older style interfaces promulgated application design patterns
that often resulted in applications having to communicate with what was essentially a
proxy or translator between it and the network elements. One often-overlooked side
effect of this approach is that the feedback loop between an application and the network
element is often measured in minutes, hours, or days! This rate of activity surely is
insufficient if we are to do anything in near real time, such as some of the use cases we
describe later in the book (e.g., bandwidth calendaring, which is covered in Chap‐
ter 12, or instantaneous CSPF, which is covered in Chapter 10).

Figure 5-2. The application-network feedback loop
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The Command-Line Interface
Each vendor since the beginning of time has had to provide some form of command-
line interface (CLI) so that the operator could communicate with the device. The CLI
is typically an ASCII character-based system that is intended to be used as the default
and lowest common denominator management interface for any given device. The CLI
is analogous to a UNIX shell prompt in many ways in that the CLI is effectively a syntax
parser that takes some action based on a string of tokens as soon as the Return key is
depressed.

Most devices support remote access to the CLI in the form of using a common protocol
such as Telnet or Secure Shell (SSH). Since these protocols operate across a network,
they are susceptible to network outages or other faults that could prevent a manager
from communicating with a device. It is for this reason that most devices big and small
still provide some form of hardwired attachment and supporting command set for local
interaction (e.g., a hardwired USB or serial port).

In general, device manufacturers specify their command-line syntax as two parts: con‐
figuration and query, or monitoring. In the case of configuration, there is often a secure
mode of operation that a manager enters in order to alter the running configuration of
a device. Some devices allow an operator to store multiple copies of configurations in
case they have different scenarios to configure or if a particular configuration happens
to not work, they have another one to fall back to. This is shown in the brief snippet
here:

RP/0/0/CPU0:ios#config t 
RP/0/0/CPU0:ios(config)#interface 
MgmtEth 0/0/CPU0/0 
RP/0/0/CPU0:ios(config-if)#
RP/0/0/CPU0:ios#
RP/0/0/CPU0:ios#admin
RP/0/0/CPU0:ios(admin)#

The command-line syntax also typically provides a query mode, allowing a manager to
interrogate the state or status of particular functions of a device. For instance, in the
previous example, we used the system’s name as one element that a manager could query
in order to ensure they were about to configure the correct device. Another example is
shown here, where we query the BGP protocol status of a device:

RP/0/0/CPU0:R2#show bgp summary
BGP router identifier 3.3.3.3, local AS number 1 BGP generic 
  scan interval 60 secs

BGP table state: Active

Table ID: 0xe0000000
BGP main routing table version 561
BGP scan interval 60 secs
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BGP is operating in STANDALONE mode.
Process Speaker Neighbor 20.0.101.1
RecvTblVerbRIB/RIB LabelVer ImportVer SendTblVer 
StandbyVer 561 561 561 561 561 561
Spk AS MsgRcvdMsgSentTblVerInQOutQ Up/Down 
St/PfxRcd 0 1 1068 1036 561 0 0 14:35:30 100

Unfortunately, the CLI syntax specified by any two vendors is typically different and
incompatible, despite the fact that different CLIs might be used to manage the same
conceptual elements. For example, a system’s name might be allowed to be in mixed
case on one system, while another might insist that it be in all capital letters (or disallow
certain reserved characters). In an effort to focus on one de facto standard, many net‐
work equipment vendors have now copied the Cisco CLI as much is legally possible.
While this has helped, these solutions are still hindered by the lack of semantic com‐
patibility of operations, such as the one we just described. Despite this, no standard for
CLI syntax exists. Some have tried to standardize it, but all have failed.

One early means of network programmability within the confines of the CLI that is still
quite commonplace is to use UNIX scripting to interact with the device’s CLI. Various
tools exist to do this, including Perl, Expect scripts, UNIX shell commands, and Python.
In these cases, scripts are programmed to connect to a device using a network transport
and session protocols such as Telnet over UDP/IP or SSH. Once connected and perhaps
authenticated, the scripts mechanically enter commands on the CLI as if a user were
typing them. This is commonly referred to as “screen scraping” because one is not truly
interacting with the system but instead acting as if one were washing windows with a
window squeegee. This is unfortunately the most widely used approach for network
programmability. The unfortunate feature of using these management robots is that
their turnaround time between programming a device and then gathering statistics in
order to adjust configuration or take actions is, relatively speaking, often quite long.
Another unfortunate deficiency of this approach is that it is largely not application
friendly. While some modern applications are written in Perl or Python, they generally
are not written to understand the semantics and syntax of a particular vendor’s CLI.
Worse yet, in cases where multiple vendor devices are present in a network, the appli‐
cation must understand multiple ways in which to interact with a device, depending on
its type, make, model, and firmware image. Most people familiar with this method of
operation consider this requirement an inappropriate and undue burden on application
programmers, who typically do not understand the details of programming a network
device—nor should they!
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1. RFC 4741 and RFC 6241

2. RFC 3535

NETCONF and NETMOD
The Network Configuration Protocol (NETCONF) is a network management protocol
standardized by the IETF. It was developed and published in December 2006.1 The IETF
developed SNMP in the late 1980s, and it continues to prove itself to be a very popular
network management protocol even today, at least for statistical monitoring. After about
10 years of deployment experience with SNMP, it unfortunately became apparent that
in spite of what was originally intended, SNMP was not being used to configure network
equipment but was mainly being used for network monitoring. Around 2001, members
of the IETF’s network management community got together with network operators to
discuss the situation. The results of this meeting are documented in RFC 3535,2 but in
summary it turned out that operators were primarily using proprietary command-line
interfaces (CLI) in order to configure their boxes instead of SNMP. The other important
discovery that came out of this meeting was the reasoning behind this behavior. Some
of the key points were that the CLI had a number of features that the operators liked,
including the fact that it was text-based, as opposed to the BER-encoded (i.e., binary)
SNMP. In addition, many equipment vendors did not provide the option to completely
configure their devices via SNMP. Most had gotten the message earlier from operators
and simply only allowed for read-only operation. Even still, those that implemented full
read-write capability were on islands of their own in some regards because while the
IETF provided standards-based MIB modules, each and every vendor still implemented
its own proprietary MIB modules. It was often the case that other vendors did not
implement these extensions. Finally, even with standards-based MIBs, some were de‐
signed using the semantics of one implementation that ultimately did not match that of
another, making it even more difficult (or impossible) to use as a configuration vehicle.

As mentioned earlier, operators generally liked to write scripts to manage their network
elements, but they uniformly found the CLI lacking in a number of ways. Most notably
was the unpredictable nature of the output. The content and formatting of output was
prone to change in unpredictable ways, including between firmware releases. While
some provided written notification of changes, as well as documentation, others failed
to provide this information, making a difficult situation worse.

Around this same time, Juniper Networks had been using an XML-based network
management approach to communicate with its devices remotely (i.e., the protocol for
the management interface) and as the native language in which to specify the model for
the CLI. This novel approach was brought to the IETF and shared with the broader
community as a proposal for a more uniform and application-friendly management
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interface. This initial proposal and the meeting described in RFC3535 ultimately led to
the creation of a new network management protocol by the IETF called NETCONF.

In short, NETCONF provides mechanisms to install, manipulate, and delete the con‐
figuration of network devices. Its operations are carried on top of a simple remote pro‐
cedure call (RPC) layer. The NETCONF protocol uses data encoding based on the
Extensible Markup Language [XML] for data as well as protocol messages. This in turn
is realized on top of the transport protocol, which can be TCP, HTTP, or HTTPS. In
general, the NETCONF protocol can be conceptually partitioned into four layers, as
depicted in Figure 5-3. We will also describe each of these layers now.

Figure 5-3. The four layers of NETCONF: content, operations, RPC, and transport pro‐
tocol

Basic NETCONF Operations

The base protocol includes the following protocol operations: get, get-config, edit-
config, copy-config, delete-config, lock, unlock, close-session, and kill-
session.
Capabilities

The base NETCONF functionality can be extended by the definition of NETCONF
capabilities. All additional protocol features that an implementation supports must be
communicated between the server and the client during the capability exchange portion
of session setup. Mandatory protocol features are not included in the capability
exchange, since their support is assumed in all compliant implementations. Some op‐
tional capabilities (including :xpath and :validate) are defined in RFC 4741.
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3. RFC 5277, http://datatracker.ietf.org/doc/rfc5277/

4. RFC 5717, http://datatracker.ietf.org/doc/rfc5717/

5. The configuration lock/unlock cycle and the associated calling of daemons to validate the syntax of subblocks
of the configuration that are invoked via the CLI configuration method (or scripting) are major stumbling
blocks to provisioning in an SDN environment.

6. RFC 6022, http://datatracker.ietf.org/doc/rfc6022/

NETCONF also offers the ability to support subscribing and receiving asynchronous
event notifications.3 In particular, the <create-subscription> operation enables an
operator to create real-time and replay subscriptions for notifications. Once emitted,
notifications are then sent asynchronously using the <notification> construct.

One very important feature of NETCONF is that it supports the partial locking of the
running configuration of a device.4 This is critical because it allows multiple sessions to
edit nonoverlapping subtrees within the running configuration. Without this capability,
the only lock available is for the entire configuration, thus requiring an effective
serialization of configuration entities that could slow down the entire configuration
process.5

Finally, the NETCONF protocol can itself be monitored6 and managed as a stand-alone
entity. Elements such as datastores, sessions, locks, and statistics that facilitate the man‐
agement of a NETCONF server are made available and can be used for important ac‐
tivities such as troubleshooting a server. But most importantly, a NETCONF server
defines methods for NETCONF clients to discover data models supported by a
NETCONF server and defines the <get-schema> operation to retrieve them. It is this
capability that allows an application (or SDN controller) to dynamically discover the
capabilities available of a device supporting NETCONF. It is this simple yet powerful
feature that will facilitate dynamic and data-driven application code creation, including
that inside of SDN controllers, which were discussed in Chapter 4.

SNMP
The Simple Network Management Protocol (SNMP) was designed by the IETF many
years ago to be an easily implementable, basic network management tool that could be
used to remotely manage network elements. The specifications that define SNMP spec‐
ify a standard protocol, access methods, and a well-known format for representing
managed data kept in network elements. Due to its longevity in the industry, SNMP has
gone through a number of iterations in an effort to improve it over the years. Three
versions of SNMP exist: V1, V2c, and V3. While the protocol itself still exists and is
widely deployed, as already mentioned, it is primarily used for monitoring network
elements, their status, and performance characteristics. Today, most production net‐
works do indeed use SNMP as at least part of their element management strategy; how‐
ever, most do not use it for configuration purposes.
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7. RFC 2571

The SNMP set of standards provides a framework for the definition of management
information along with a protocol for the exchange of that information. The SNMP
model assumes the existence of managers and agents, as shown in Figure 5-4.

Figure 5-4. The basics of the SNMP Architecture are comprised of an SNMP Manage‐
ment system and an SNMP Managed System

In general, any application that wishes to query or configure network elements are called
managers in SNMP parlance and thus contain a manager component. It is this compo‐
nent that communicates with an agent component that resides within a network ele‐
ment. The IETF SNMP Framework7 defines a more generalized model of SNMP entities.
The architecture of an SNMP entity is one that is more complex than the more simplistic
agent-manager relationship but still generally applies. Since the purpose of this chapter
is to provide the reader with a survey of available technologies, we will not go into such
details but instead aim for a slightly higher-level view of the important pros and cons
of this protocol.
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The SNMP agent

An SNMP agent is a software module in the network element responsible for main‐
taining local management information and delivering that information to a manager
via the SNMP protocol. Typical implementations of network elements contain an agent.
The agent manages the management information base (MIB) that is the conceptual data
store within the device. Think of this as the collection of manageable objects within a
device, such as the system’s name, location, or date of last reboot. The agent also acts as
a message dispatcher in that it intercepts, authenticates, and processes messages from
the manager. A management information exchange can be initiated by the manager (via
get, get-next, or get-bulk commands) or by the agent (via a trap or notification). The
agent listens for requests and replies to them. When queried, an agent gathers infor‐
mation about the managed resource in response to the request from a manager. In doing
so, it acts as a normalization layer between a manager and the device’s internal imple‐
mentation. For example, the internal system’s name might be represented as two con‐
catenated strings representing the system’s first and last name, these strings must first
be combined before responding to a manager’s request to view the name. This is because
the IETF standard defines the system’s name as a single string of arbitrary length, but
only as a single string. This is the normalization function that the SNMP MIB definitions
provide, much like any management protocol’s standard data model does.
The SNMP manager

The analogue to the SNMP agent is the manager. The manager represents what its name
implies: an application whose job it is to manage a device. The term management can
mean a variety of things and has evolved over time to encompass any application that
is responsible for configuring, monitoring, or simply querying a network device in order
to obtain some piece of information. The traditional picture of a network manager is
that of a full-blown element or network management system such as CA’s IM 2.0 or
Alcatel’s SAM product; however, it does not have to be. As we discussed earlier in the
CLI section, a manager can be a simple Python application whose purpose it is to mon‐
itor a system’s interface status. In this case, rather than the application having to SSH to
a CLI, it would import an SNMP library and use the SNMP protocol as the communi‐
cations channel between it and the agent/network element.
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Manager and agent relationship

As mentioned earlier, SNMP facilitates communication between a managed device (a
device with an SNMP agent—let’s say a router) and an SNMP manager or management
application. This basic relationship is illustrated in the Figure 5-5. Communication be‐
tween these two entities is achieved via the SNMP Protocol. These messages are typically
encapsulated in UDP packets, and four kinds of operations are permitted between
managers and agents (managed device). These operations are:
Get

The manager can perform a get (or read) to obtain information from the agent
about an attribute of a managed object.

Get-Next

The manager can perform a get-next to do the same for the next object in the tree
of objects on the managed device.

Get-Bulk

The manager can perform a get-bulk to obtain information about a group of data
from the agent. This is not possible in the case of SNMP V1.

Set

The manager can perform a set (or write) to set the value of an attribute of a
managed object.

In addition to these messages, an agent may emit a trap or a notification that represents
an asynchronous notification. These notifications are directed to one or more managers
and are intended to indicate that some event on the managed device has occurred.

In more modern, highly scaled systems, the CPU burden created by the work of the
SNMP agent (particularly when it interfaces with multiple managers) is often addressed
by creating a local hierarchy that includes distributed proxies. Tweaks to the agent op‐
eration itself (such as the number of records fetched in each access of tabular data) and
data management optimization techniques (such as local caching) are not uncommon.
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Figure 5-5. Basic SNMP manager and agent configuration; the manager is represented
by the management console/PC, while agents can exist within just about any network-
enabled entity including a router, switch, and the less obvious server or printer

The MIB (management information base)

SNMP specifies a scheme by which all of the objects and instances of those objects
present within a system can be uniquely identified and specified. These items are called
object identifiers, or OIDs. OIDs are specified as an ordered sequence of non-negative
integers written from left-to-right and separated by a period (i.e., a dot). This is some‐
times called dot notation. For example, the OID “2.1.0” represents a unique OID within
some agent’s MIB. OIDs are generally structured in the form of <object identifier>.<in‐
stance ID> in order to allow a manager to specify a specific instance of an object. Think
of an object as a variable name and the instance as one or potentially many versions of
that variable. OIDs can also indicate tabular objects and include indexes, or can indicate
scalar objects. OIDs are arranged and organized in a hierarchical tree structure where
the topmost levels in the tree are controlled by the ITU and ISO standards bodies in
order to provide some order and structure to the standard tree. Subtrees within this
structure are doled out to other organizations such as the IETF to manage, while subtrees
within that structure are further distributed to organizations and corporations for ex‐
perimental or private (i.e., proprietary MIB) use. Figure 5-6 demonstrates this
arrangement.
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Figure 5-6. OIDs are arranged and organized in a hierarchical tree structure where the
topmost levels in the tree are controlled by the ITU and ISO standards bodies

The SNMP manager or management application uses this well-defined OID naming
syntax to indicate objects on which it intends to perform one of the aforementioned
operations. To this end, every SNMP protocol message includes an OID and an oper‐
ation to perform on that OID, as well as perhaps a value to set said OID to. The man‐
agement information base, or MIB, is a conceptual store within a device containing all
of the MIB modules that a device supports. This document is what specifies the syntax,
and in some cases, semantic operational behaviors expected of any implementation of
the module. MIB modules are created to manage specific functions such as protocols
or features of a device. They are also designed to manage logical or physical entities such
as interfaces and power supplies. For example, if a company wants to build new device
and wants the BGP stack on that device to be remotely managed, it will write and im‐
plement a series of both standards-based and proprietary MIBs that will have informa‐
tion about that protocol.
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Modern Programmatic Interfaces
Now that we have described the most common management interfaces, let’s move the
discussion to modern management interfaces and concepts. These new interfaces and
concepts are those that enable and encourage network programmability in the best
sense. To that end, these interfaces exhibit most if not all of the key attributes we spelled
out in the introduction earlier: bidirectional, application-friendly, and self-describing.
They also incorporate robust data models that can translate into data-driven behavior
and rapid implementation, and of course are easily developed by communities of de‐
velopers.

Publish and Subscribe Interfaces
Publish-Subscribe interfaces, or simply pub-sub as it is more commonly known, is a
messaging pattern whereby senders of messages (called publishers) send messages to
receivers (called subscribers). Senders do not program the messages to be sent directly
to specific receivers but rather characterize published messages into classes. This is done
without the expressed knowledge of what, if any, subscribers there may be at any point
in time. In this model, subscribers express interest in one or more classes, and thereby
only receive messages that are in the class of messages they are interested in. This is
done without the knowledge of what, if any, publishers exist. In doing so, this imple‐
ments what is called a messaging bus whereby messages are placed on the bus, and
subscribers simply receive them. This pattern provides greater network scalability and
a more dynamic network topology than a point-to-point system would due to properties
such as lower state management requirements. Message buses can be reliable or unre‐
liable and provide buffer queuing controls much like a virtual network would. In fact,
the pub-sub paradigm is a sibling of the message queuing paradigm and so resembles
many of the principles of networks. In order to handle the most robust set of use cases,
most modern messaging systems support both the message queue and pub-sub models
in their API. One such example is the Java Message Service (JMS) that is very popular
with Java applications programmers.

In the pub-sub model, subscribers typically receive only a subset of the total messages
published. This is a very important feature, as it simultaneously lowers the burden of
an application around message processing and lessens the overall system load of mes‐
sage delivery, maintenance, and accounting. The process of selecting messages for re‐
ception and processing is called message filtering. The two common forms of filtering
are called topic-based and content-based.
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A topic-based system publishes messages to topics that represent logical sets or are
analogous to logical channels in a broadcast system. Subscribers in a topic-based system
will receive all messages published to the topics to which they subscribe, but no others.
All subscribers to a topic will receive the same messages and generally in the order in
which they were published. Although certain messaging systems do account for message
ordering, as well as buffering, others do not, and so this cannot be assumed for every
system. In order for the messages to be understood by subscribers, it is important that
the publisher first define the classes of messages to which subscribers can subscribe. If
this is not done, then any messages that are not subscribed to are simply discarded (i.e.,
ignored) by all subscribers.

In contrast, a content-based system only delivers messages to a subscriber if the at‐
tributes or content of those messages match constraints defined by the subscriber. This
is analogous to setting up search filters for email messages with matches on certain fields
of a message. When messages are matched, they are placed in a special folder. This is
the same in this case except that the message is delivered rather than ignored. Similar
to the publisher in the topic-based approach, the subscriber is responsible for classifying
the messages, or they are simply ignored.

It should be noted that many messaging systems support a hybrid of the two approaches
in that publishers can post messages to a topic, and subscribers may simultaneously
register content-based subscriptions to topics. In many pub-sub systems, subscribers
register subscriptions with a broker, letting the broker perform the filtering. In this
model, publishers post messages to an intermediary message broker or event bus. The
broker normally performs a store and forward function in order to buffer messages so
that they are not lost in case of congestion. Once a message trickles up to the top of its
queue, it is routed from publishers to subscribers. In addition, the broker may prioritize
messages in a queue before routing. Since a broker maintains all messages that are
transmitted through the system, it can easily clone all messages so that they can be
replayed at a later time. This is an important feature of such a system, as it can provide
both a troubleshooting or diagnostic function, as well as a high-availability function if
one imagines a broker replicating messages to a backup broker that can take over in
case this broker somehow stops functioning.

One interesting part of this design pattern is that subscribers can register for specific
messages at build time, initialization time, or runtime. It is this flexibility that makes
this model so useful and widely adopted. Some frameworks and software products use
XML configuration files to register subscribers, providing what we have been calling a
data-driven approach that can dynamically adjust depending on system attributes, con‐
figuration, or local conditions.

Because publishers are loosely coupled to subscribers, they need not even know of their
existence. This is an important attribute of this approach because it means that neither
publishers nor subscribers need to keep track of the state, accounting, or other attributes
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around publishers or subscribers. This is the job of the broker, which while providing
a single point of failure does have the benefit of centralizing these chores. This also
means that publishers and subscribers remain unaware of system topology, meaning
that there is essentially no configuration once a publisher or subscriber registers with a
broker. This also means that no changes happen to publishers or subscribers as more
subscribe or unsubscribe to topics, content, or the system as a whole. This also means
that regardless of the state of all of the other publishers or subscribers, any given element
can continue to operate normally.

Of course, if a publisher goes away (i.e., crashes, VM is paused, CPU is busy, etc.),
messages from that publisher will cease to appear within the system or to subscribers.
What is important is that the state of any given element is only loosely coupled to that
of the others. This is in contrast to the traditional tightly coupled client-server para‐
digm, whereby a client might not be able to post messages to the server while the server
process is not running, nor can the server receive messages unless the client is running.
One interesting implementation approach is that most pub-sub systems are capable of
decoupling subscribers from publishers temporally. For example, a publisher might be
disabled in order to allow subscribers to process a backlog of messages, thereby throt‐
tling the messaging bandwidth as well as processor usage of subscribers.

The pub-sub model provides the opportunity for better scalability than traditional
tightly coupled client-server approaches in that parallel operation, message caching,
and tree-based or network-based routing are possible within this system. Not only is
there better scalability, there is also the potential for the system to be more highly avail‐
able than the traditional ones.

For example, one approach would be to run two publishers in parallel, as described
earlier, in order to afford the system some resiliency. In this case, one publisher could
crash or be brought down for maintenance while the other continues without any loss
of generality of the system. The pub-sub paradigm has proven its scalability to volumes
far beyond those of a single data centers, providing Internet-wide distributed messaging
through web syndication protocols such as RSS, Atom, and XMPP. These syndication
protocols accept higher latency as well as a reduction or outright loss of delivery guar‐
antees in exchange for the ability to service massive numbers of subscribers.

One of most serious problems with the pub-sub approach is the decoupling of the
publisher from the subscriber. The issue is that a broker in a pub-sub system may be
designed to deliver messages for a specified time but then stop attempting delivery,
whether or not it has received confirmation of successful receipt of the message by all
subscribers. A pub-sub system so-designed cannot guarantee delivery of messages to
any applications that might require such assured delivery. If publishers or subscribers
are unaware of this limitation, then synchronization and other consistency issues might
arise. One way to address such a limitation is, ironically, a tighter coupling of the designs
of such a publisher and subscriber pair in order to overcome these limitations. This
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8. RFC 6120, http://datatracker.ietf.org/doc/rfc6120/; RFC 6121, http://datatracker.ietf.org/doc/rfc6121/; and
RFC 6122

must be enforced outside of the pub-sub architecture to accomplish assured delivery,
making this approach undesirable as it imposes additional burdens on the application
programmer.

In terms of SDN systems that can benefit from the pub-sub model, both applications
and controllers can be built with pub-sub constructs to enjoy the benefits described
previously. In particular, a controller can use pub-sub to communicate with the elements
it controls. This was illustrated in the Juniper Contrail controller/agent solution (based
on XMPP—see the next section) in Chapter 4.

It is also a common inter-module communication scheme within the controller as ex‐
emplified in the CiscoOne controller (Chapter 4) and OpenDaylight Project (ODP)
framework (Chapter 9).

Another example is for inter-controller communication to utilize a pub-sub model.
Controllers can relay or convey status to one another using this loosely coupled ap‐
proach, meaning that they can continue doing the work they need to do without block‐
ing to process, send, or receive messages from other controllers. Finally, this can also
be used in cases where many applications wish to interact with a controller. In order to
enhance the scalability of the communications between the controller and applications,
the pub-sub model can be implemented by installing a broker separately from the con‐
troller in order to mediate, process, and maintain communication between the con‐
troller and applications.

XMPP
As was just mentioned, the Extensible Messaging and Presence Protocol (XMPP) is an
example of a pub-sub protocol and has been used to implement a number of publish-
subscribe systems. XMPP is a communications protocol based on XML [Extensible
Markup Language] . The protocol can be used to provide near real-time instant mes‐
saging, presence information, or just about any information really that needs to be
extended to a subscription group. It was designed to be extensible, as its name suggests,
and has in fact been extended a number of times over the years.

XMPP is an open protocol standardized at the IETF.8 In addition to these core protocols
standardized at the IETF, the XMPP Standards Foundation (formerly the Jabber Soft‐
ware Foundation) is active in developing open XMPP extensions. Many implementa‐
tions have been developed and distributed that are in use, such as Jabber, Google Talk,
and Facebook Messenger

The architecture of XMPP is very decentralized and analogous to email in that anyone
can run his or her own XMPP server and there is no central master server that everyone
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must connect to or authenticate with. Of course, private groups of publishers and sub‐
scribers can be implemented. This is the case, for example, in the controller and appli‐
cation example we just gave in the pub-sub section. The server itself acts like the message
broker we described in the pub-sub section. It handles all of the registration and message
passing required. Publishers and subscribers all register with the server using a topic-
based approach in that they filter based on participating in what is effectively a group
conversation. Servers can support multiple conversations. For example, many instant
messenger servers support multiple private, multiway conversations among groups of
users simultaneously.

The XMPP network uses a pub-sub client-server architecture in that clients do not talk
directly to one another but instead register with a central server that acts effectively as
the pub-sub broker function. This means that clients and servers are loosely coupled
and enjoy all of the aforementioned benefits of such a relationship. The architecture is
decentralized by design in that there is no global authoritative server, as there is with
instant messaging services such as Facebook Messenger or Google Talk. This sometimes
leads to confusion, as there is a public XMPP server being run at jabber.org, to which a
large number of users subscribe. However, this is only for that community of users.
Others may (and do) run their own XMPP server on their own domain, or now, as part
of an application framework that has nothing to do with these public implementations.

In the XMPP architecture, every user in the system has a unique Jabber ID. We use the
term user here loosely, as it really is either an application that acts as a publisher, sub‐
scriber, or both in the pub-sub paradigm. To avoid requiring a central server to maintain
a list of IDs, the Jabber ID is typically structured like an email address with a username
and a domain name or an IP address. A further indication of the server where that user
resides can be included by using an at sign (@) after the username, such as username@ex
ample.com. While common, this is not required and in fact might not suit frameworks
that implement XMPP. In these cases, other localized naming schemes can very well be
used.

The XMPP system has a notation of message priority. As we described earlier, some
pub-sub systems employ queuing for message delivery. In this case, an ordered/priority
queuing approach is employed. To this end, each resource may specify a numerical value
called a priority when it registers with a server. Messages sent to that user will be treated
with appropriate priority. The highest priority is specified using the largest numerical
value. It should be noted that messages sent without a username are also valid in the
XMPP system. These are used for system messages and control of special features on
the server.

An important and interesting twist on the normal XMPP deployment model is the use
of XMPP via HTTP and WebSocket transports. The original and native transport pro‐
tocol for XMPP is the Transmission Control Protocol (TCP) over IP. This encoding
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9. This section was not meant to be a full-blown description of Google protocol buffers; however, we did want
to give a sufficient introduction to the material. For additional detailed information, see https://develop
ers.google.com/protocol-buffers/.

used XML streams over long-lived TCP connections where the XML stream format was
left up to the users to define and specify.

As an alternative to the TCP transport, the XMPP community has also developed an
HTTP transport for web clients and for users behind certain restricted firewalls. In the
original specification, XMPP could use HTTP in two ways: either in polling mode or
in a binding model. We will not consider the polling method, as it is deprecated. The
binding method is implemented using bidirectional streams over synchronous HTTP.
This method allows servers to push messages in an asynchronous manner to clients as
soon as they are ready to be sent. This approach is far more efficient than the deprecated
polling approach—hence its popularity. One other advantage to using an HTTP
transport is that most firewalls allow clients to fetch and post messages without any
issues related to port filtering or blocking. Using this approach, a server can simply listen
on the normal HTTP or HTTPS ports and process XMPP-encapsulated traffic as it
arrives.

Google’s Protocol Buffers
Protocol buffers are Google’s language-neutral, platform-neutral, extensible mecha‐
nism for serializing structured data. Google invented protocol buffers as a refinement
to deficiencies their coders found in both XML and JSON.9

The major refinement of protocol buffers has been to make XML smaller and denser
through the use of a binary encoding. One of the downsides to using XML is that while
it is presented in a human-readable format, it is quite verbose in terms of the amount
of characters that need to be transmitted to convey the same information that one would
with a comparative binary format. This in fact was one of the arguments against using
NETCONF (versus SNMP) in the early days of NETCONF. Recall that we discussed the
relative merits of these earlier, and one of those was the speed at which SNMP could
process requests due to its compact, binary format. While it was in a compact format,
searching for which information to act on could take considerable time. Approaches
such as those in protocol buffers do not necessarily suffer from either limitation. How‐
ever, in general, the question one has to ask when comparing these approaches is
whether or not the compactness outweighs the ability for humans to quickly inspect
and understand the text. One way to help decide is whether or not the format will be
used for internal or external APIs. In general, the consensus seems to be that it’s a good
idea to use binary-encoded APIs only for internally consumed APIs and use human-
readable ones (i.e., XML, JSON, etc.) for public-facing ones.
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There is a single way of defining a structured data format that then is exchanged and
serialized in protocol buffers. This is done by defining a buffer message type in
a .proto file. Each protocol buffer message then represents a logical record of information
in this format. Each message then contains a series of name-value pairs using this syntax.
Here is a very basic example of a .proto file that defines a message containing information
for an address book entry:

message PersonalRecord {
  required string nameFirst = 1;
  required string nameLast = 2;
  required string streetAddress = 3;
  optional string emailAddress = 3;

  enum PhoneType {
    MOBILE = 0;
    HOME = 1;
    WORK = 2;
     HOME_OFFICE = 3;
  }
  message PhoneNumber {
    required string internationalNumber = 1;
    optional PhoneType type = 2 [default = MOBILE];
  }
  repeated PhoneNumber phone = 4;
}

As you can see, the message format is rather straightforward. Each message type has at
least one uniquely numbered field, and each field has a name and a value type. Note
that value types can be numbers (i.e., integer or floating-point), booleans, strings, raw
bytes, or other protocol buffer message types (as in the previous example). These other
types allow one to structure data hierarchically, in a manner that allows for customiza‐
tion and flexibility to suit the needs of the application. Optional fields, required fields,
and repeated fields can be specified as well, and we showed that in the previous example
with the repeated PhoneNumber portion indicating that four entries are repeated.

Once the data structure types and formats are defined, a number of protocol buffer
compiler tools are available that can generate source code from these types in order to
write and read these. These tools are available for a wide variety of data stream types as
well as for a variety of languages, including Java, Python, Perl, and C++. Once messages
have been defined, one of the protocol buffer compilers is run for a particular target
language. This compiler is fed the .proto file or files as input, and that generates data
access classes. Part of this process generates access functions for each field (i.e., query()
or set_query()) as well as methods to serialize or parse the already defined data struc‐
tures to/from raw bytes—so, for instance, if your chosen language is C++, running the
compiler on the earlier example will generate a class called PersonalRecord. You can
then use this class in your application to populate, serialize, and send and retrieve Person
protocol buffer messages.
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One very cool feature of protocol buffers is that code that is generated for receiving
messages will ignore structures with additional fields not defined in the version of the
code compiled. This means that absolute compatibility between sides of the discussion
need not be precise. This is allowed because its designers were concerned with server
upgrades required as the APIs evolved rapidly and wanted to obviate the need to upgrade
all of the servers at once. On a small scale, this might not seem like a big deal, but for a
company like Google, upgrading tens of thousands of servers in a short period of time
can definitely be an issue.

Getting back to the example, if you examine the newly generated C++ code, you can
imagine populating these classes and using them to transmit a message such as the
following:

PersonalRecord personalRec;
personalRec.set_name("David Blowfish");
personalRec.set_id(420420420420);
personalRec.set_email("blowfish@lovestogrowgrapes.com");
fstream output("someFile", ios::out | ios::binary);
personalRec.SerializeToOstream(&output);

To read the message, you would execute the following:
fstream input("someFile", ios::in | ios::binary);
PersonalRecord personalRec;
personalRec.ParseFromIstream(&input);
cout << "Name: " << personalRec.name() << endl;
cout << "E-mail: " << personalRec.email() << endl;

One of the interesting aspects of protocol buffers is that the format is self-describing—
a very desirable feature of APIs used in SDN contexts. This is because those APIs not
only can be used to generate code, but also to dynamically interpret the semantics or
syntax. This also holds true if modified because the code is generated, meaning that an
application can both detect incompatibility and modify itself based on asking about the
updated API, and in doing so, suddenly become up to date. In addition to being used
for short-lived Remote Procedure Call (RPC) requests, protocol buffers can also be used
as a means of defining self-describing data persistent storage.

Protocol buffers are now the preferred choice for data formatting at companies such as
Google and a number of other large data center providers where they are used both in
RPC systems as well as for persistent storage of data.
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10. This section was not meant to be a full-blown description of Thrift; however, we did want to give a sufficient
introduction to the material. For additional detailed information, see http://thrift.apache.org/.

Thrift
Thrift10 is an interface definition language that is used to define and create services for
numerous languages.

Like protocol buffers, it too is used as a remote procedure call (RPC) framework. Like
protocol buffers, Thrift was developed to address the growing needs of a burgeoning
application content service provider—Facebook. At the time of its creation, Facebook
operated data centers on a massive scale and encountered issues similar to those Google
ran into a number of years earlier. Thrift is written in C++, but its compiler can create
code for a number of languages. Like protocol buffers, Thrift combines a code genera‐
tion engine to build services with multiprogramming language support, although in the
spirit of Facebook’s much more flexible development environment, Thrift supports a
very wide variety of generated languages including C++, Erlang, Go, Haskell, Perl, Cap‐
puccino, Python, C#, Perl, Ruby, Smalltalk, Node.js, and PHP.

In April 2007, Facebook donated the project to the Apache Software Foundation, where
it continues to be worked on and developed.

As mentioned earlier, Thrift includes a complete software library that can be used to
create clients and servers, as well as an RPC mechanism between the two that facilitates
communication.

Figure 5-7 shows the functional architecture of a Thrift client and server. The service
client and read()/write() code is generated from the Thrift service definition file. This
file is fed to the Thrift compiler that then generates client and processor code that is
later incorporated into the client and server code. The protocol and transport layer
shown in the figure are part of the runtime library that comes as a precompiled library
included into the client and server base.
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Figure 5-7. The Apache Thrift API client/server architecture

This standard Thrift library includes server infrastructure that is used to handle the
underlying I/O calls.

As with Google protocol buffers, in Thrift it is possible to define a service and change
the protocol and transport without recompiling the code. This is due to the fact that the
code is generated from definition files, as well as the fact that unknown fields are ignored.

Thrift actually supports a number of protocols that can be used to satisfy various ap‐
plication requirements. For example, Thrift supports a protocol called TBinaryProtocol,
which is a basic binary format that can be used in cases where the raw textual format is
undesirable for performance reasons. Another is the TJSON Protocol that is used to
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include JSON encoding of data. There are numerous protocols supported (see the ref‐
erences for additional details on these).

This is an example of a Thrift service description file:
enum PhoneType {
 HOME,
 WORK,
 MOBILE
}
struct Phone {
 1: i32 id,
 2: string phoneNum,
 3: PhoneType type
}

As you can see, this code is quite similar to how structures would be defined in C++,
which (for those familiar with that language) should be straightforward.

Thrift will generate the code out of this descriptive information. For instance, in Java,
the PhoneType will be a simple enum inside the C++ class Phone.

JSON
JavaScript Object Notation, or JSON as it is more commonly known as, is a lightweight
data-interchange format. One of the main appeals of JSON is that being based on XML,
it is easy for humans to read and write. At the same time, it is relatively easy for machines
to parse and generate. JSON is a text format that is completely language independent
but uses conventions that are familiar to programmers of the C-family of languages,
including C, C++, C#, Java, JavaScript, Perl, and Python. It is these properties that make
JSON a very appealing data-interchange language and one that has proven to be excel‐
lent in use for constructing APIs for SDN controllers and applications.

JSON is based around the simple premise of the interaction of two structures: a collec‐
tion of name/value pairs and an ordered list of values. In various languages this is re‐
alized as an object, record, or struct, among others. In most languages, an ordered list
of values is treated as an array, or list. Most modern programming languages support
these constructs, although the actual form varies from language to language.

It makes sense that a data format that is interchangeable with programming languages
would also be based on these structures. In JSON, the data format takes on these forms.

An object is an unordered set of name/value pairs. An object begins with a { (left brace)
and ends with a } (right brace). Each name is followed by a colon (:) and the name/value
pairs are separated by a comma (,). The following is an example of a JSON definition:

    {"menu": {
    "header": "SVG Viewer",
    "items": [
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        {"id": "Open"},
        {"id": "OpenNew", "label": "Open New"},
        null,
        {"id": "ZoomIn", "label": "Zoom In"},
        {"id": "ZoomOut", "label": "Zoom Out"},
        {"id": "OriginalView", "label": "Original View"},
        null,
        {"id": "Quality"},
        {"id": "Pause"},
        {"id": "Mute"},
        null,
        {"id": "Find", "label": "Find..."},
        {"id": "FindAgain", "label": "Find Again"},
        {"id": "Copy"},
        {"id": "CopyAgain", "label": "Copy Again"},
        {"id": "CopySVG", "label": "Copy SVG"},
        {"id": "ViewSVG", "label": "View SVG"},
        {"id": "ViewSource", "label": "View Source"},
        {"id": "SaveAs", "label": "Save As"},
        null,
        {"id": "Help"},
        {"id": "About", "label": "About Adobe CVG Viewer..."}
    ]
}}

I2RS
About two years ago, a group including Tom Nadeau, Ping Pan, Alia Atlas, and David
Ward began thinking about how to standardize programmability concepts such as a
northbound interface for a controller, (rapid) programming of devices, and network
topology. These were all things that were at the heart of the SDN discussion, yet many
definitions, descriptions, and implementations existed of these concepts. In some cases,
partial standards existed or were in progress, while in others, the fate of the components
lay in the hands of a not-so-open forum.

It was these motivations that hatched a plan to engage this work at the IETF, which was
an organization well known for creating high quality and open standards. After much
hard work, organizing and writing, we were able to lift the organization off the ground.
It now exists at the IETF as the Interface to the Routing System (or I2RS in IETF short-
hand lingo).

There are three key aspects at the head of the I2RSL:

• First, the interface is a modern programmatic interface much in the sense that we
have been discussing in this chapter (meaning that it is asynchronous and offers
fast, interactive access). It should be self-describing and easily consumed and/or
manipulated by modern applications and programming methods.
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11. http://tools.ietf.org/html/draft-atlas-i2rs-problem-statement-00

• Second, the I2RS gives access to information and state that is not normally modeled
or manipulated by existing implementations or configuration protocols. For ex‐
ample, this might be the active forwarding table of a device.

• Third, the I2RS gives applications the ability to learn additional, structured infor‐
mation, such as topology and events, from a device. This information will be offered
in a manner that is filterable in order to support flexibility, scalability and ease of
consumption by applications.

When I2RS started out, a survey and examination of existing mechanisms was done to
determine feasibility and applicability to a number of use cases. The final contenders
were SNMP and NETCONF because both allowed state to be written and read to and
from devices but ultimately did not meet all of the key properties given in for I2RS.11

For example, the overhead of programming within the SNMP infrastructure is quite
high and expensive for modern applications. In addition, many MIBs are not (in defi‐
nition or practice) implemented in a read-only manner and thus are not suitable for
configuration of a device’s state.

In the case of NETCONF, it was determined that there is very limited capability to add
new application-specific state to be distributed via the routing system. NETCONF pos‐
sesses many useful traits such as configuration replay, rewind, and verification, but these
are time-consuming and are thus not suitable for rapid configuration of devices that
might have these things taken care of by an external SDN controller.

Given the nature of not only RIB data but also the potential for high transaction rates
in SDN programmatic interfaces, the interface may need to also create ephemeral state
in the target. This is a shortcoming in many existing interfaces, including NETCONF.
To this end, proposals have come out of the I2RS effort that extend its capability to create
and manage ephemeral state).

A few interesting use cases around I2RS are:
Route Control via Indirection

By enabling an application to install routes in the RIB, it is possible that when, for
example, BGP resolves its IGP next-hop via the RIB, that could be to an application-
installed route. In general, when a route is redistributed from one protocol to an‐
other, this is done via the RIB. Such a route could have been installed via the I2RS
interface. This is very similar to the PCE-P server example in Chapter 4.

Policy-Based Routing of Unknown Traffic
A static route, installed into the RIB, could direct otherwise unrecognized traffic
toward an application, through whatever appropriate tunnel was required, for fur‐
ther handling. Such a static route could be programmed with indirection so that its
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12. IETF RFC 6020

outgoing path is whatever is used by another particular route (e.g., to a particular
server). This is very similar to the input-traffic detection and associated actions use
cases described in Chapter 12.

Services with Fixed Hours
If an application were to provide services only during fixed time-periods, the ap‐
plication could install both a specific route on the local router in the RIB and ad‐
vertise the associated prefix as being attached to the local router via the IGP. If the
application knew the fixed hours, the state so installed could be temporal and au‐
tomatically removed at approximately the correct time. This is very similar to the
bandwidth calendaring example described in Chapter 10.

As we have discussed earlier in this chapter, a number of management interfaces exist
today that allow for the indirect programming of the routing system. These include
proprietary CLI, NETCONF, and SNMP. However, none of these mechanisms allows
for the direct, rapid, and application-friendly programming of the routing system within
a device. Such asynchronous interfaces are needed to support dynamic, time-based
applications.

These interfaces should cater to how applications typically interact with other applica‐
tions and network services rather than force them to use older mechanisms that are
more complex to understand, implement, and operate. The interfaces should allow ap‐
plications to have limited, filtered, or abstracted knowledge of the network.

Authorization and authentication are also critical so that the I2RS can be used by a
network application that is not completely controlled by the network operator but is,
nonetheless, given some access to I2RS.

The I2RS working group is developing standard data models with their associated
semantics.

Whereas many routing protocols are standardized, associated data models for them are
not yet available. Instead, each router uses different information, mechanisms, and CLI,
which makes a standard interface for use by applications extremely cumbersome to
develop and maintain.

Well-known data modeling languages, such as YANG,12 exist, have some in-progress
data models, and might be used for defining the necessary data models for I2RS; how‐
ever, more investigation into alternatives is required. It is understood that some portion
(hopefully a small subset) will remain as proprietary extensions; the data models must
support future extensions and proprietary extensions.

Since the I2RS will need to support remote access between applications running on a
host or server and routers in the network, at least one standard mechanism must be
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identified and defined to provide the transfer syntax, as defined by a protocol, used to
communicate between the application and the routing system.

Common functionality that I2RS needs to support includes acknowledgements, noti‐
fications, and request-reserve-commit.

Work in the I2RS Working Group around defining appropriate candidate protocols is
underway. Protocols that are chosen should ideally not require that applications un‐
derstand and implement existing routing protocols to interact with I2RS. These inter‐
faces should instead be based on lightweight, rapidly deployable approaches; technology
approaches must be evaluated, but examples could include ReSTful web services, JSON,
XMPP, and XML. These interfaces should possess self-describing attributes (e.g., a web
services interface) so that applications can quickly query and learn about the active
capabilities of a device. It may be desirable to also define the local syntax (e.g., pro‐
gramming language APIs) that applications running local to a router can use.

Since evolution is anticipated in I2RS over time, it is important that versioning and
backward compatibility are basic supported functionality. Similarly, common, consis‐
tent error-handling and acknowledgement mechanisms are required that do not se‐
verely limit the scalability and responsiveness of these interfaces.

Since the I2RS effort is relatively nascent, we will only speculate that the effort has seen
some success in rallying the community to begin to define the interfaces and other
elements required to satisfy its lofty goals. Whether they are achievable or not, only time
will tell.

Modern Orchestration
In recent years, the need to orchestrate a number of key elements of not only networks,
but also data centers, has arisen. In particular, the need to motivate and monitor storage,
compute, and storage within these deployment scenarios is a key requirement in order
to achieve the fastest, cheapest, and most optimized deployments. In the past, these
things were either done manually or with traditional management systems that were
relatively slow and clunky. In order to achieve these things, a few rather parallel efforts
have continued in order to define not only standards, but also more importantly de
facto standards based on deployed, open source code that was used in production data
center environments such as Yahoo, Bloomberg, Rackspace, and others.

From an SDN perspective, the network-activation APIs from these efforts represents a
subset of the capabilities of the API of an SDN controller (largely because of their focus
on a specific application).
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OpenStack
OpenStack13 is a global collaboration whose aim is to produce the open standard cloud
operating system for both public and private clouds. OpenStack is a freely available,
Apache-licensed software system that can be used to build massively scalable cloud
environments.

OpenStack currently consists of many software projects (in addition to the Common
Project that binds them)—see Figure 5-8: OpenStack Compute (code-named Nova),
OpenStack Object Storage (code-named Swift and Cinder), OpenStack Networking
(code-named Quantum), OpenStack Image Service (code-named Glance), OpenStack
Identity (code-named Keystone), and OpenStack Dashboard (code-named Horizon).

These projects deliver a pluggable and extendable framework that forms an open source
operating system for public and private clouds.

The OpenStack system has grown in popularity over the past year due to its tight inte‐
gration with the most popular hypervisors in the industry. For example, support in‐
cludes ESX, Hyper-V, KVM, LXC, QEMU, UML, Xen, and XenServer.

Nova is open source software designed to provision and manage large networks of
virtual machines, creating a redundant and scalable cloud-computing platform. This
project represents what most people envision when they imagine what Open Stack does.
The software provides control panels and APIs required to orchestrate a cloud. This
includes running virtual machine instances, managing networks, and accessing control
for both users and groups (i.e., projects). OpenStack Compute is hardware and
hypervisor agnostic in theory, although actual builds and support is limited largely to
the most popular server platforms.
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Figure 5-8. Components of the OpenStack architecture

Swift and Cinder is open source software for creating redundant, scalable data storage
using clusters of standard servers to store multiple blocks of accessible data. It is not a
filesystem or real-time data system, but rather a long-term storage system for large
amounts of static data that can be retrieved or updated. Object Storage uses a distributed
architecture in order to not have a central point of failure. This also affords the user
greater flexibility of deployment options, as well as the obvious scalability, redundancy,
and performance.

Glance provides discovery, registration, and delivery services for virtual disk images.
The Image Service API server provides a well-defined RESTful web services interface
for querying information about virtual disk images. These disk images may be stored
in a variety of backend stores, including OpenStack Object Storage. Clients can register
new virtual disk images with the Image Service, query for information on publicly
available disk images, and use the Image Service’s client library for streaming virtual
disk images. These images can then be referenced later much in the way a menu of dishes
can be made available to a diner in a restaurant.

Figures 5-9 and 5-10 demonstrate how each of the three components of OpenStack
exists first before an image is launched (i.e., invoked via a hypervisor) and attached to
virtual storage, and then later once an image is invoked.
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Figure 5-9. Each of the three major components of OpenStack representing storage,
compute, and image management

Figure 5-10. Each of the three components after an instance creation has been imple‐
mented using one of the cataloged images

Nova will not configure physical network interfaces but will automatically create all
virtual network bridges (e.g., br100) and VM virtual interfaces (through the nova-
network subset of functions).

Nova assigns a private IP address to each VM instance it deploys. This address is then
attached to the Linux Bridge via the nova-network API and then (potentially) to a NAT
function that allows the virtual interfaces to connect to the outside network through
the physical interface. The network controller with nova-network provides virtual net‐
works to enable compute servers to interact with one another and with the public
network.
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Currently, Nova (nova-network) supports three kinds of networks, implemented in
three Network Manager types: Flat Network Manager, Flat DHCP Network Manager,
and the VLAN Network Manager. The three kinds of networks can coexist in a cloud
system.

Nova will automatically create all network bridges (i.e., br100) and VM virtual inter‐
faces. All physical machines must have a public and internal network interface.

Quantum provides the API that builds required network connectivity between Open‐
Stack physical nodes (i.e., between the vNICs managed by Openstack Nova—providing
them network as a service functionality).

This makes the Quantum API most pertinent to the discussion of SDN and network
programmability, though it should be noted that (because of its focus on the delivery
of primitives required by a single application—orchestration) the Quantum API is a
subset of the capabilities that could be exposed through the northbound API of most
SDN controllers/frameworks/systems.

Quantum is targeted at the creation of advanced virtual topologies and services like the
commonly used layer 2-in-layer 3 overlay that is used in larger deployments to skirt the
limits of traditional VLAN-based deployments. That is, Quantum seeks to decouple
service specification APIs (what) from service implementation (how), exploiting a
capabilities-rich, underlying topology consisting of virtual and physical systems. Open‐
stack functionality is deployed via plug-ins that may be distributed as part of the public
Quantum release or privately. The plug-in architecture allows vendors to support the
standard API in the configuration of a network service while hiding their own backend
implementation specifics.

The current release of the API (version 2.0) provides simple L2 connectivity via 7-10
plug-ins. The plug-ins follow a single-service/single-device model that makes support‐
ing a multivendor vSwitch environment problematic. For example, separate plug-ins
exist for Cisco Nexxus, OVS, and Linux Bridge. Similarly, separate plug-ins exist for
both the Ryu and NEC OpenFlow controllers (and others, as shown in Chapter 4).
Additionally, physical devices are typically managed manually, out of band (though a
growing number of network element providers are providing their own plug-ins). In
version 2.0, the term “network” has two implicit semantics: grouping of ports and service
(layer 2 connectivity) and service given to ports (working on the assumption that the
only reason to group ports was to provide them network layer 2 connectivity).

The elements of version 2.0 are network (connectivity service), subnet (policy) and port
(tenant endpoint). Version 3.0 of the Quantum API (known as Grizzly) is in its proposal
stage. Proposals include the addition of layer 3 network APIs (e.g., VPN), the addition
of network service APIs (e.g., security, load balancing), and potentially a move toward
a multiservice/multivendor plug-in model. See Figure 5-11 for a sketch of the differences
between elements/relationships in Quantum version 2.0 and Quantum version 3.0.
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Another 3.0 proposal decouples grouping and connectivity service semantics. The el‐
ements in 3.0 would include connectivity service (layer 2 domain, layer 3 domain),
group, policy (subnet, securityPolicy, fIPPolicy, lbPolicy, and qosPolicy), rule(s) that
define the policy, and a new endpoint abstraction that is either a consumer (or provider)
endpoint or ports, VMs, and vApps.

Figure 5-11. The elements and relationships of Quantum version 2.0 (left) and the pro‐
posed elements and relationships of Quantum version 3.0 (right)

CloudStack
CloudStack14 is a Cloud Orchestration platform that pools computing resources to build
public, private, and hybrid Infrastructure as a Service (IaaS) clouds. CloudStack is very
similar to OpenStack in that it manages the network, storage, and compute nodes that
make up a cloud infrastructure. A CloudStack cloud has a hierarchical structure that
enables it to scale to manage large numbers of physical servers, all from a single man‐
agement interface.

The CloudStack architecture is comprised of some basic elements: pods, clusters, and
secondary and primary storage. A pod is hardware that has been configured to form
clusters. A pod is most usually a data center rack containing one or more clusters and
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connectivity to a layer 2 switch that is shared by all clusters in that pod. It is important
in the CloudStack architecture that end users are unaware of and have no visibility of
pods. This preserves the illusion of multitenancy and provides an element of security
for both the hosting provider, as well as any other tenants in the data center. A cluster
is a group of identical hosts running a common hypervisor. For example, a cluster could
be a VMware cluster pre-configured in vCenter. Each cluster has a dedicated primary
storage device. This storage device is where the virtual machine instances are hosted
and launched from. With multiple hosts within a cluster, high availability and load
balancing are standard features of a CloudStack deployment.

An availability zone is the largest organizational unit within a CloudStack environment
and is shown in the Figure 5-12. A data center will usually contain a single zone but may
contain more than one. By structuring CloudStack into geographical zones, virtual in‐
stances and data storage can be placed in specific locations in order to comply with an
organization’s data storage policies for performance or geographical optimization. This
can also be utilized for regulatory compliance reasons where storage/compute must be
kept within a certain geographical boundary. An availability zone consists of at least
one pod and secondary storage, which is shared by all pods in the zone. Zones are visible
to end users. This is important because this is how users are allowed to choose which
zone they wish to create their virtual instances in. A public zone is visible to all users,
but private zones can also be created that are then only available to members of a par‐
ticular domain and its associated subdomains. This is in fact, how multitenancy can be
implemented using CloudStack.

The secondary storage system is used to store virtual machine templates, ISO images,
and snapshots. These are used later to launch instances of VMs. The storage is available
to all pods in a zone. Storage can also be replicated between availability zones, thereby
providing a common storage platform throughout the whole cloud. This can also be
automated.

Primary storage is unique to each cluster and is used to host the virtual machine in‐
stances. Since primary storage is a critical component, it is often built on high-
performance hardware with multiple high-speed disks that afford the system an element
of both redundancy and higher-performance.

Secondary storage uses the Network File System (NFS). NFS is a widely deployed file‐
system with built-in networking capabilities, thus any host in the zone can access
CloudStack storage.

CloudStack is designed to work with all standards-compliant iSCSI and NFS Servers
supported by any of the supported hypervisors.
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16. We chose Puppet to illustrate the capability of DevOps configuration tools in the discussion of network
programmability. There are many other optional sources of software for the similar functionality, including
Chef, Ganglia, and urban{code}. There is also an extended tool chain available (additional software modules
from additional repositories), including applications for monitoring, logging and other functions.

Figure 5-12. A CloudStack availability zone

Puppet
Puppet15 is one of a group of IT automation software tools (commonly referred to as
DevOps tools16) that help system administrators manage infrastructure throughout its
lifecycle, from provisioning and configuration to patch management and compliance.
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See Figure 5-13 for a sketch of the Puppet DevOps management cycle. Puppet allows
IT administrators to automate repetitive tasks, quickly deploy critical applications, and
proactively manage change servers.

While Puppet is available as both open source, it is also available in a variety of com‐
mercial enterprise versions.

Puppet uses a declarative, model-based approach to IT automation. This language al‐
lows an IT administrator to easily define the desired state of the infrastructure’s con‐
figuration using Puppet’s declarative configuration language. It allows an administrator
to simulate configuration changes before enforcing them. It enables the enforcement of
the desired state of deployed infrastructure automatically. Administrators can use this
to correcting any configuration changes as well. Finally, Puppet provides reports for an
administrator that can then be used to detect differences between actual and desired
states and any changes made to enforce the desired state of infrastructure.

Figure 5-13. Puppet DevOps high-level management cycle

To define an infrastructure’s desired state, one first selects from pre-built, freely down‐
loadable configuration modules, or by building custom modules using Puppet’s con‐
figuration language. Once defined, these configurations can be used across physical,
virtual, and cloud environments as well as across operating systems to manage and
orchestrate infrastructure components. It is also possible to combine or mix and match
configuration modules in order to create complete application configuration stacks.
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These stacks can be useful, for example, when integrated into infrastructure manage‐
ment applications, or in some cases, SDN controllers.

Once configured, the Puppet agent on each infrastructure node communicates regularly
with the Puppet master server to automatically inform it of its state. The Puppet master
can then choose to enforce the desired states of the nodes by instructing them to do so,
or simply monitor and report their deviations from the expected configurations. The
Puppet agent on the node sends what the Puppet architecture calls facts or data about
the node’s state back to the Puppet master server. This is done at regular intervals, or
based on an event occurring. Using these facts, the Puppet master server compiles what
is referred to as a catalog, or a detailed data set about how the node should be configured.
This information is periodically sent back to the Puppet agent. See Figure 5-14 for a
sketch of the Puppet configuration/provisioning cycle.

After making changes to return to the desired state, the Puppet agent sends a complete
report back to the Puppet master. The reports are fully accessible via open APIs for
integration with other IT systems. It should be noted that these reports could be executed
in what is referred to as no-op mode, which allows an administrator to simulate changes
without actually making changes to the network elements. This makes Puppet an im‐
portant “what if?” scenario testing tool, as well as a planning tool.

Figure 5-14. Puppet configuration/provisioning cycle (specific)
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Conclusions
This chapter introduced the concept of network programmability as one of the key
features or aspects of software-defined networks that truly differentiates it from what
many might think of as just another form of network management.

We introduced the concept of programmability and showed how it can exist in network
devices, controllers and software components as a key to how these elements interact
with one another. Making a device easily programmable requires that we first create
some sort of bidirectional communications channel between it and the other piece of
software communicating with it—controllers or applications communicating with con‐
trollers.

We then introduced the concept of a tightly coupled feedback loop between these ele‐
ments. We showed why this concept differs from the traditional network management
paradigm that traditionally focused on a simple agent and manager model.

SDN thrives on having multiple managers, agents, and controllers, all interacting in a
symphony of tightly coupled communication in order to achieve optimizations and
abilities not possible with the old model.

In order to realize this new paradigm of communication and interaction, tightly cou‐
pled, bidirectional streaming interfaces are needed. We showed why these interfaces
also need to be readily and rapidly implemented in software so as to encourage their
use and ubiquitous deployment. These interfaces have been commonly referred to as
application friendly and represent how modern applications are built today. Some of
this was actually introduced in Chapter 4, but was expanded here to give fuller detail of
how this is achieved. We’ll take another look at it again in Chapter 9.

We then described a number of programmatic and streaming interfaces in detail, in‐
cluding JSON, Google buffers, Thrift, and more recently the work in the IETF’s I2RS
working group.

We concluded the chapter with a discussion of orchestration interfaces such as Open
Stack, Open Cloud, and Puppet. These too are ultimately another form of programm‐
ability.
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CHAPTER 6

Data Center Concepts and Constructs

Introduction
Prior to the existence of data centers, computing, storage, and the networks that inter‐
connected them existed on the desktop PCs of enterprise users. As data storage grew,
along with the need for collaboration, departmental servers were installed and served
this purpose. However, they provided services that were dedicated only to local or limi‐
ted use. As time went on, the departmental servers could not handle the growing load
or the widespread collaborative needs of users and were migrated into a more centralized
data center. Data centers facilitated an ease of hardware and software management and
maintenance and could be more easily shared by all of the enterprise’s users.

Modern data centers were originally created to physically separate traditional comput‐
ing elements (e.g., PC servers), their associated storage (i.e., storage area networks or
SANs) and the networks that interconnected them with client users. The computing
power that existed in these types of data centers became focused on specific server
functionality, such as running applications that included mail servers, database servers,
or other enterprise IT applications.

It was around 10 years ago that an interesting transformation took place. A company
called VMware had invented an interesting technology that allowed a host operating
system, such as one of the popular Linux distributions, to execute one or more client
operating systems (e.g., Windows) as if they were just another piece of software. What
VMware did was to create a small program that created a virtual environment that
synthesized a real computing environment (e.g., virtual NIC, BIOS, sound adapter, and
video). It then marshaled real resources between the virtual machines. This supervisory
program was called a hypervisor. This changed everything in the IT world, as it now
meant that server software could be deployed in a very fluid manner and also could
better utilize available hardware platforms instead of being dedicated to a single piece
of hardware. This is shown in Figure 6-1.
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Figure 6-1. Virtualized applications running on a single bare-metal server as virtual
machines

With further advances and increases in memory, computing, and storage, data center
servers were increasingly capable of executing a variety of operating systems simulta‐
neously in a virtual environment. Operating systems such as Windows Server that pre‐
viously occupied an entire bare metal machine were now executed as virtual machines,
each running whatever applications client users demanded. Moreover, network admin‐
istrators now had the option to locate that computing power based not on physical
machine availability. They could instead dynamically grow and shrink it as resource
demands changed. Thus began the age of elastic computing.

Within the elastic computing environment, operations departments were able to move
servers to any physical data center location simply by pausing a virtual machine and
copying a file across their network to a new physical computing location (i.e., server).
They could even spin up new virtual machines simply by cloning the same file and telling
the hypervisor, either locally or on some distant machine, to execute it as a new instance
of the same service, thus expanding that resource. If the resource was no longer needed
or demand waned, server instances could be shut down or even just deleted. This flex‐
ibility allowed network operators to start optimizing the data center resource location
and thus utilization based on metrics such as power and cooling. By using bin packing
techniques, virtual machines could be tightly mapped onto physical machines, thus
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optimizing for different characteristics such as locality of network between these servers,
or as a means of even shutting down unused physical machines to save on power or
cooling. In fact, this is how many modern data centers optimize for virtual machine
placement because their dominating cost factors are power and cooling. In these cases,
an operator can turn down (or off) cooling an entire portion of a data center. Similarly,
an operator could move or dynamically expand computing, storage, or network re‐
sources by geographical demand. Figure 6-2 shows a modern data center.

Figure 6-2. A modern data center comprised of compute, storage, and network
resources

As with all advances in technology, this newly discovered flexibility in operational de‐
ployment of computing, storage, and networking resources brought about a new prob‐
lem: one of operational efficiency both in terms of maximizing the utilization of storage
and computing power and in terms of power and cooling. As mentioned earlier, network
operators began to realize that computing power demand in general increased over time.
To keep up with this demand, IT departments (which typically budget on a yearly basis)
would order all the equipment they predicted would be needed for the following year.
However, once this equipment arrived and was placed in racks, it would consume power,
cooling and space resources—even if it was not used for many months.

The general consensus is that this was first discovered at Amazon. At the time, Amazon’s
business was growing at a break-neck rate—doubling every six to nine months. For a
while its compute, storage, and network resources could not keep up with the growing
demand placed on the company by its online ordering, warehouse, and internal IT
systems. For a while, Amazon tried to get ahead of this demand using the old method
of prepurchasing a lot of equipment, but ran into the same problems others did in that
this equipment would have to be purchased so far in advance that it would in fact sit
idle for a significant amount of time. At this point, Amazon realized that while growth
had to stay ahead of demand for computing services, it needed to be tailored to be
available just in time for their services to use. This is when the idea of Amazon Web
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Services (AWS) was hatched. Basically the idea was to still preorder capacity in terms
of storage, compute, and network, but instead of leaving it idle, the company realized
that it could leverage elastic computing principles to sell unused resource pool so that
it would be utilized at a rate closer to 100%. When internal resources needed more
resources, they would simply push off retail users, and when they were not, retail com‐
pute users could use up the unused resources. Some call this elastic computing services
—this book calls it hyper virtualization due to the fact that most large data centers do
this on quite a massive scale and because the virtualization is so pervasive that this
concept is used for storage, computing, and storage resources simultaneously.

The Multitenant Data Center
One key thing to notice in the Amazon AWS model is that not only is Amazon virtu‐
alizing its services, but in terms of access controls and resources management, it also
now needs a different paradigm—by letting external users into its network, it has just
created a multitenant data center environment. This of course created a new problem:
how to separate potentially thousands of tenants, whose resources need to be spread
arbitrarily across different physical data centers’ virtual machines while giving them all
ubiquitous and private Internet access to their slice of the AWS cloud? Figure 6-3
illustrates this concept.

Another way to observe this dilemma is to note that during the move to hyper virtualized
environments, execution environments were generally run by a single enterprise or
organization. That is, they typically owned and operated all of the computing and stor‐
age (although some rented co-location space) as if they were a single, flat, local area
network (LAN) interconnecting a large number of virtual or physical machines and
network attached storage. The exception was in financial institutions, where regulatory
requirements mandated separation. However, the number of departments (or tenants)
in these cases was relatively small—on the order of fewer than 100. These departments
also were addressed using the same, private network IP address space. This was easily
solved using existing tools at the time such as MPLS layer 2 or layer 3 VPNs. In both
cases though, the network components that linked all of the computing and storage
resources up until now were rather simplistic: it was generally a flat Ethernet LAN that
connected all of the physical and virtual machines. Most of these environments assigned
IP addresses to all of the devices (virtual or physical) in the network from a single
network (perhaps with IP subnets), as a single enterprise owned the machines and
needed access to them. This also meant that it was also generally not a problem moving
virtual machines between different data centers located within that enterprise because,
again, they all fell within the same routed domain and could reach each other regardless
of physical location.
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Figure 6-3. Multitenant data center concept; in multitenant data centers, users must
have access to virtual slices of compute, storage, and network resources that are kept
private from other tenants

The concept of a tenant can mean different things in different circumstances. In a service
provider data center providing public cloud services, it means being a customer. In an
enterprise data center implementing a private cloud solution, it can mean a department
(which can be viewed as an internal customer). Multitenancy is different than multiuser
or multienterprise, though not mutually exclusive of these terms. Tenancy occurs above
the user or enterprise boundary. Multitenancy is common in both public and private
clouds and not limited solely to Infrastructure as a Service (IaaS) data center offerings.
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1. http://www.zdnet.com/blog/saas/many-degrees-of-multi-tenancy/533

2. The schema-sharing degree comparison also included a second-degree example (Intaact, which had a 1:250
schema/customer ratio) and a lesser-degree example, which was the Oracle pod architecture (that the author
labels “the abandonment of the shared schema principle”).

In 2008, when cloud computing was becoming a phenomenon, a blog by Phil Waine‐
wright1 attempted to define the nuances within the term “multitenancy” as an archi‐
tectural consideration established at the application layer. A tenant is a user of a shared
application environment or (to the point of the blog) some subset of that environment.
In the original posting, the differences in the definition of multitenancy were defined
as the degree of multitenancy. This concept revolved around how much of the application
is shared—down to the database, where the schema defines the database structure. The
example given was of Salesforce.com’s deployment of a single schema (shared by all
customers) that scaled on a distributed system using database replication technology
(at the time of the article, Salesforce was achieving an incredible 1:5000 database
instance-to-customer ratio2).

By 2012, this idea was revisited, and several notable cloud architects were mapping the
degree to common data center application/service archetypes (see Figure 6-4):
Infrastructure as a service (IaaS)

Infrastructure (compute, storage, and network) are shared. Exemplified by Ama‐
zon.

Platform as a service (PaaS)
An application development environment is shared. Exemplified by Google Apps.

Software as a service (SaaS)
An application is shared. Exemplified by Salesforce.com.

The architects introduced a second axis of multitenancy (other than the degree to which
schema are shared across customers). In this model:

• The highest degree of multitenancy occurs in the IaaS and PaaS aspects of the data
center service−offering hierarchy.

• The overall highest degree of multitenancy occurs when all three aspects of the
service offering, including SaaS, are fully multitenant.

• A middle-degree of multitenancy may be seen when IaaS and PaaS are multitenant
but SaaS is multitenant in physical clusters or for various subcomponents of SaaS.

• The lowest degree of multitenancy occurs when SaaS is single tenant.

These degrees describe the tightness of coupling application components and the net‐
work and security architectures required to support them—important dependencies
related to movement of either a single VM or the distributed-but-dependent collection
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of application/service components, that is, important to VM mobility—the poster child
of SDN applications.

Figure 6-4. Degrees of multitenancy

In this chapter, we will explore the basic concepts behind the multitenant data center,
associated architecture, and the potential control plane solutions vying to become
standards for SDN in the data center.

The Virtualized Multitenant Data Center
The virtualized multitenant data center allows multiple tenants to be hosted in a data
center while offering them private access to virtual slices of resources. The data center
network may be a multitier network. Although the first designs started with a two-layer,
spine-and-leaf design, additional growth has caused the appearance of a third, aggre‐
gation tier, as shown in Figure 6-5. The data center may also be a single-tier network
(e.g., Juniper’s Q-Fabric), as shown in Figure 6-6.
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Figure 6-5. Multitenant virtualized data center (multitier data center network)

Generally, each tenant corresponds to a set of virtual machines, which are hosted on
servers running hypervisors. The hypervisors contain virtual switches (vSwitches) to
connect the virtual machines to the physical network and to one another. Applications
may also run on a bare-metal server. That is, they are not run in a virtual machine but
are instead executed on an entire machine dedicated to that application, as shown in
the B server in the lower right corner of Figure 6-6.

Servers are interconnected using a physical network, which is typically a high-speed
Ethernet network, although there exist variations where optical rings are used. In
Figure 6-5, the network is depicted as a two-tier (access, core) layer 2 network. It could
also be a three-tier (access, aggregation, core) layer 2 network, or a one-tier (e.g., Q-
Fabric) layer 2 network. For overlay solutions, the data center network could also be a
layer 3 network (IP, GRE, or MPLS).
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Figure 6-6. Multitenant virtualized data center as a single-tier data center network (Ju‐
niper’s Q-Fabric)

Each tenant is assigned a private network, as shown in Figure 6-7. The tenant’s network
allows each service instance to communicate with all of the other instances of the same
tenant, subject to policy restrictions. In reality, this means that each physical or virtual
machine hosting the service must have network access either via layer 3 or layer 2 to the
other machines in its logical tenant grouping. The tenant networks are isolated from
one another: a virtual machine of one tenant is not able to communicate with a virtual
machine of another tenant unless specifically allowed by policy.

The Virtualized Multitenant Data Center | 165

http://www.it-ebooks.info/


Figure 6-7. Logical network abstraction as presented to tenants

The tenant private networks are generally layer 2 networks, and all virtual machines on
a given tenant network are then configured within the same layer 3 IP subnet. The tenant
may be allowed to pick his own IP address for the VMs, or the cloud provider may assign
the IP addresses. Either way, the IP addresses may not be unique across tenants (i.e., the
same IP address may be used by two VMs of two different tenants). In these cases, some
network address scheme (NAT) must be employed if those tenants are allowed to speak
to each other or others outside of that network (such as public Internet access to the
services).

A single tenant may have multiple networks, for example, for the purpose of imple‐
menting security zones, for combining multiple departments together such as in a case
where IaaS is in use, or when multiple cloud providers are being utilized to host their
services. Figure 6-8 illustrates how multiple cloud providers are attached to an enter‐
prise’s local data center in order to extend their data center, thereby providing elastic
cloud services. The advantages of this configuration include redundancy, use of the
cheapest cloud providers resources (much like consuming electricity from multiple
providers is done), or simply to provide geographic coverage for services deployed over
a wide geographic span.
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Figure 6-8. Multiple networks for a tenant enterprise; tenant cloud networks A1, A2,
A3, and A4 span multiple geographic and logical service providers to weave together a
consistent yet virtual service offering for customer A

Orchestration
One important aspect of a virtualized multitenant data center solution is orchestration.
In order for a service provider to deploy and otherwise manage a multitenant data center
solution, it must implement some form of logically centralized orchestration. Orches‐
tration in a data center provides the logically centralized control and interaction point
for network operators and is a central point of control of other network controllers. At
a high level, the orchestration layer provides the capability of:

• Adding and removing tenants
• Billing system interface after provisioning operations are executed
• Workflow automation
• Adding and removing virtual machines to and from tenants
• Specifying the bandwidth, quality of service, and security attributes of a tenant

network
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This orchestration layer must cover all aspects of the data center that include interfacing
with compute, storage, network, and storage systems or controllers. And it must do so
at a high rate of change to support true elastic compute services, as demonstrated in
Figure 6-9.

Figure 6-9. Data center orchestration engine example; orchestration in a data center
provides the logically centralized control and interaction point for network operators
and is a central point of control of other network controllers

Connecting a Tenant to the Internet/VPN
Data center tenants are typically connected to the Internet or the tenant’s enterprise
network via some VPN, as shown in Figure 6-10. The VPN can be a L3 MPLS VPN, a
L2 MPLS VPN, an SSL VPN, an IPsec VPN, or some other type of VPN. The actual type
of VPN has different pros and cons and also depends on which underlay network is
employed in the data center (such as Ethernet, VLANs, stacked VLANs, VxLAN, and
MPLS). The various types of underlays and network overlays will be discussed in detail
later in this chapter.
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Figure 6-10. Connect tenant to Internet/VPN

The data center gateway function is responsible for connecting the tenant networks to
the Internet, other VPN sites, or both, as shown in Figure 6-10. Note that multiple
gateways may be employed, depending on the network architecture employed. While
it is still typical to deploy physical devices as gateways, it is also perfectly viable to im‐
plement the gateway function in software as a virtualized service. We discuss this more
in Chapter 7.

Virtual Machine Migration and Elasticity
Virtual machine (VM) migration is the act of moving a VM from one compute server
to another server. This includes cases where it is running but can also include dormant,
paused, or shutdown states of a VM. In most cases, the operation involves what ulti‐
mately is a file copy between servers or storage arrays close to the new computing re‐
source (but proximity does not have to be the case).
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The motivations for VM migration include:

• Data center maintenance
• Workload balance/rebalance/capacity expansion (including power management)
• Data center migration, consolidation or expansion
• Disaster avoidance/recovery
• Geographic locality (i.e., moving access to a service closer to users to improve their

experience)

Given the earlier definition of tenancy and the concept of the degree of tenancy, the idea
that migration is limited to a single server instance is the simplest case to illustrate. In
some cases, the application may be multitier and represented by a tightly coupled en‐
semble of VMs and network elements. Migration of a single VM in this context could
lead to performance and bandwidth problems. The operator and/or orchestration sys‐
tem needs to be aware of the dependencies of the ensemble. However, in other cases,
where there is a loose coupling of the various layers of an application (i.e., compute,
frontend load-balancer/web-services, and a backend distributed database), much as
applications written to take advantage of Hadoop or other granular process distribution
architectures, VM migration—or more commonly, destruction and creation, usually
only has beneficial effects on the service. In these cases, live VM migration is typically
not employed. The three-tiered architecture is shown in Figure 6-11. In the three-tiered
architecture, a single VM is required to implement each of the three layers of the system,
but more component VMs can be spun-up at any time to execute either locally on the
same compute server or remotely in order to expand or contract computing resources.
Seamless job process distribution is handled by technologies such as Hadoop, which
enables this granular and elastic computing paradigm while seamless, easily scalable,
and highly resilient backend database functionality is handled by technologies such as
Cassandra.

There is still some debate about how frequently live migration might occur between
data centers as a DCI use case. The reasoning is that in order for any migration to take
place, a file copy of the active VM to a new compute server must be performed, and
while a VM is being copied, it cannot be running, or the file would change out from
under the copy operation. Hence this operation is becoming less and less common in
practice. Instead, moving to a three-tiered application architecture where the norm is
to create and destroy machines is far simpler (and safer).
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Figure 6-11. Three-tiered application architecture employed by modern applications

Figure 6-12 demonstrates a VM move between two compute servers. If the two servers
are in the same data center, it is an intra data center VM migration requiring a simple
point-to-point file copy of the VM file after pausing the VM. If the two servers are in
different data centers, it is referred to as an inter data center VM migration and still
requires a file copy between two IP end points but may require that file transfer to
traverse a much more complex and lengthy network path. Based on this, and remem‐
bering the discussion regarding live VM moves, in order for the VM to remain live
during the file transfer, the network must continue running throughout the migration,
and all sessions (e.g., TCP connection) must remain up. This is a bit of wizardry handled
by the hypervisor system that manages the VMs and the VM move.
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Figure 6-12. VM migration

Further complicating the situation is that in many cases, the MAC address and the IP
address of the VM must remain unchanged, as well as any configuration state related
to the VM, in order to facilitate a seamless move. This includes other network-related
items such as QoS configuration, ACLs, firewall rules, and security policies. All of these
things must be migrated to the new server and/or access switch. This also includes any
runtime state inside the VM itself and in the vSwitch. In addition, the switches in the
physical network must be promptly updated to reflect the new position of the VM. This
includes MAC tables, ARP tables, and multicast group membership tables. It is for these
complications that it is far easier to employ the three-tiered application design pattern
and simply create and destroy component VMs.
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The VM migration can be implemented in one of three ways:
Network Data-plane driven approach

VM migration can be detected through the supporting network devices monitoring
network traffic to and from the VM (for example, detection of gratuitous ARP
messages).

Hypervisor driven approach
The component inside the hypervisor (the vSwitch or the vGW) uses introspection
to detect the VM migration. One way to do this is by virtue of the old hypervisor
detecting that the VM is gone while the new hypervisor detects the VM has ap‐
peared.

Orchestrator driven approach
The VM migration is not detected at runtime a priori; instead, the orchestrator
explicitly triggers the movement of runtime state before it performs the VM mi‐
gration.

The runtime state can be updated in one of two ways:
Data-plane driven approach

The VM sends some traffic to force the runtime state to be updated. For example,
the VM can broadcast a gratuitous ARP to force all MAC tables in the tenant net‐
work to be updated with the new location of the VM’s MAC address.

Orchestrator or control-plane driven approach
The orchestrator uses a control-plane signaling protocol to explicitly update the
runtime state in all places where it needs to be updated.

The details of the specific method for detecting a VM migration and
updating the runtime state are provided in the section “SDN Solu‐
tions for the Data Center Network” on page 184.

VM migration is implemented by copying the entire state (disk, memory, registers, etc.)
from one server to another. This is generally accomplished by copying the VM’s file that
includes all of these things in a single file. During the initial phase, which can take several
minutes, the copying process occurs in the background while the VM is still running
on the original server. In the last fraction of a second, when the copying is almost com‐
plete, the original VM is suspended, the last remaining state is copied, and the VM is
reanimated on the new server. This process requires high bandwidth and low latency
between the two servers because the time it takes to replicate this last state equates to
time that the service implemented by the VM is unresponsive.

An alternative approach is to take a snapshot of a VM, pause it, and then move the
snapshot to another server, after which the hypervisor will un-pause the VM. This is a
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3. Alternatives are available that use active/active synchronous data distribution between volumes, where dis‐
tances supported are claimed to be up to 100 kilometers.

migration, but not a live migration.3 There is an aspect related to storage in live migra‐
tion, particularly if the two VMs use the shared storage model in which both VMs share
a common logical volume on a common physical disk (array) and transfer a lock that
allows I/O to continue during migration. Distance and latency allowed for this proce‐
dure varies with the disk access protocol (iSCSI, NFS, Fibre Channel). It is also possible
to again split the application into multiple tiers whereby a common backend database
is used to store state and other information. Just before the VM pauses before its move,
that state is locked. When it reanimates elsewhere, it simply reconnects to this store and
continues.

Scale and performance of VM moves will vary based on the type of service offering
(IaaS, PaaS, or SaaS) and the degree of tenancy. A simple IaaS offering at a typical service
provider with the current generation of Intel/ARM processor, c. 2012, might present
the following rough scale numbers:
Number of data centers

Multiples of tens (depends entirely on the geography of the offering; the example
given would be for a country the size of Japan)

Number of servers per center
Tens of thousands

Number of servers per cluster/pod
1,000

Number of tenants per server
Approximately 20 (current generation of processor, expected to double with next
generation)

Number of VMs per tenant
Approximately five

VM change rate
Highly variable

VM change latency
This is a target that varies by provider and application
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4. Another layer 2 network driver in Data Center networks is continual connectivity through VM motion. In
general, during VM mobility, the source and destination server don’t need to be on the same IP subnet, but
to maintain IP connectivity, extending layer 2 connectivity may be attractive.

Data Center Interconnect (DCI)
Now that we have introduced the basic concepts of what a data center is and how one
can be built, let’s discuss how one or more data centers can be connected. In particular,
for configurations where multiple data centers are required either for geographic di‐
versity, disaster recovery, service, or cloud bursting, data centers are interconnected
over some form of Wide Area Network (WAN). This is the case even if data centers are
geographically down the street from one another; even in these cases, some metro access
network is typically used to interconnect them. A variety of technological options exist
that can achieve these interconnections. These include EVPN, VPLS, MPLS L3 or L2
VPNs, pseudowires, and even just plain old IP.

In cases where two or more data centers exist, then you must consider how to connect
these data centers. For example, a tenant may have arbitrary numbers of virtual ma‐
chines residing in each of these different data centers yet desires that they be at least
logically connected. The Data Center Interconnect (DCI) (see Figure 6-13) puts all VMs
of a given tenant across all data centers on the same L2 or L3 underlying (i.e., underlay)
tenant network.4 It turns out in order to interconnect data centers, you can treat data
centers almost like Lego blocks that snap together, using one of the concepts extrapolated
from the multitenant data center concept already discussed.
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Figure 6-13. Data Center Interconnect (DCI)

As it turns out, interconnecting data centers is not necessarily a simple thing because
there are a variety of concerns to keep in mind. But before jumping feet first into all the
various ways in which DCI can be implemented, let’s first examine some of the require‐
ments of any good DCI solution, and more importantly, some of its fallacies.

Fallacies of Data Center Distributed Computing
When designing a data center and an architecture, or strategy, for interconnecting two
or more data centers, one inevitably needs to list the requirements of the interconnec‐
tion. These often start with a variety of assumptions, and we have found that in practice,
many of these fall into a category of things that seem to make sense in theory, but in
practice are impossible to guarantee or assume. These assumptions include the
following:

• The network is reliable.
• Latency is zero.
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• Bandwidth is infinite.
• The network is secure.
• Topology doesn’t change.
• There is one administrator.
• Transport cost is zero.
• The network is homogeneous.

At first, these notions may seem quite reasonable, but in practice they are quite difficult
(or impossible) to achieve. For example, the first four points make assumptions about
the technology being employed and the equipment that implements it. No equipment
is perfect or functions flawlessly, and so it is often a safer bet to assume the opposite of
these first points. In terms of points four to six, these fall under administrative or per‐
sonnel issues. All things equal, once your network is configured, it should continue
operating that way until changed. And therein lies the rub: operational configuration
errors (i.e., fat-finger errors) can be catastrophic from the perspective of the normal
operation of the network and because they can also inadvertently introduce security
holes. (There are statistics that have actually shown a reduction in network failures
during holiday or vacation periods, when network operations staff is not operating
networks.)

Data Center Distributed Computing Pitfalls to Consider
It turns out that the DCI must account for the fact that address spaces of tenants can
overlap—for example, using L2 MPLS VPNs, L3 MPLS VPNs, GRE tunnels, SSL VPNs,
or some other tunneling mechanism to keep the address spaces separate. Depending
on the strategy chosen to manage addresses, these might fall into the issues just discussed
under DCI fallacies. In particular, assuming that addresses overlap but are protected
from one another can quickly unwind if an operational configuration misconfigures a
new tenant that unexpectedly can see another tenant’s VMs. So keep in mind that the
choice of an addressing scheme goes beyond the obvious choice and should include
consideration of operations and management verification and checking schemes.

There are performance criteria for the interconnection, too. Many of the constraints
derive from the concept of live migration between data centers (including disk I/O, as
previously mentioned), and there is a great deal of debate over whether live migration
is really a use case to be considered in Data Center Interconnect design, given the hurdles
that must be passed in order for that to function effectively. For example, discussions
in the Broadband Forum on the topic of DCI assert that the VMware VMotion solution
requires 622 Mbps minimum bandwidth between data centers and recommends less
than 5 ms Round Trip Time (RTT) between source and destination servers (see
Figure 6-14). This effectively sets physical limits on the distance between servers. In
reality, the answer to how much bandwidth you need is derivable based on known data.
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5. The RTT/distance relationship is (for the most part) governed by the speed of light in fiber cables, so the 400
kilometer distance limitation comes from a rough calculation using .005ms/km as speed of propagation (and
the fact that this is a round trip measurement, so the actual budget is 2.5 ms each way).

This data can be generalized, but is determined largely by the tenant service behavior
and target constraints. DCI bandwidth is of a particular concern, as it is directly related
to the change window duration and the amount of data to replicate. The RTT and thus,
distance of data center separation, is also a constraint.5 While a calculation could opti‐
mize for all constraints, the example just cited was for a three-hour change window for
a particular data product with the bandwidth of the link set to a fixed value. Of course,
these calculations can be performed for an atomic action or the aggregate of all opera‐
tional actions, which will result in different values.

Figure 6-14. Distance limitations for recommended VMotion latency (at interconnect
rate of 622 Mbps)

To review, the general scale concerns when designing the DCI include:

• MAC address scalability is an issue on the DC WAN edge for solutions that use L2
extension (e.g., 250k client MAC addresses in a single Service Provider data center
multiplied across interconnected SP data centers and Enterprise data centers)

• Pseudowire scale (i.e., the number of directed LDP sessions, MAC learning)
• Control plane scale (i.e., whether or not an L2 control plane domain is extended

between data centers)
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6. RFC 4761 (BGP-Based VPLS), RFC 4762 (LDP-Based VPLS), BGP Autodiscovery for LDP-Based VPLS
RFCxxxx, Hierarchical VPLS option for LDP based VPLS

• Broadcast, unknown unicast, and multicast traffic handling (BUM)

In the end, a mixture of layer 2 extensions and IP interconnection may be required. The
latter may be straightforward IP forwarding or L3VPN. The outstanding questions are
around whether or not the control planes of the different centers are disjoint/separated.
DCI approaches

The common approaches for DCI that have been mentioned can be considered across
a spectrum starting from the simplest to the most involved, placed into the following
categories to better frame their pros and cons:

• VLAN Extension uses 802.1q trunking on the links between the data centers and
is fraught with the same concerns of VLANs in the data center; MAC scalability,
potential spanning tree loops, unpredictable amounts of BUM traffic and little
control that allows effective load balancing over multiple links (traffic engineering).

• There are some proprietary solutions to the VLAN extension problem. For exam‐
ple, Cisco vPC (virtual port channel) suggests bonding inter-DC links and filtering
STP BPDUs to avoid STP looping.

• VPLS uses MPLS to create a pseudowire overlay on the physical connection between
the data centers. The MPLS requirement comes with an LDP and/or multiprotocol
BGP requirement (for the control plane of the overlay) that may (to some operators)
mean additional complexity, though this can be mitigated with technique like Auto-
Discovery.6

• MPLS brings additional potentially desirable functionality: traffic engineering, fast
reroute, multicast/broadcast replication, a degree of isolation between data centers
allowing overlapping VLAN assignments and hiding topology, and fairly broad
support and interoperability.

VLANs for DCI

The simplest solution for DCI is to simply use VLANs. In cases where there are fewer
than about 4,000 tenants in any given data center, it is perfectly acceptable (and scalable)
to use VLANs as a segregation mechanism. This mechanism is supported on most
hardware from high-end routing and switching gear, all the way down to commodity
switches. The advantages around using this mechanism are that basically they are dead
simple to architect and initially inexpensive to operate. The disadvantages are that they
are potentially complex to administer changes to later. That is, there are a potentially
large number of points that will need VLAN/tag mappings modified in the future if
changes are desired.
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7. RFC 6790 for Entropy Labels and RFC 6391 for FAT Pseudowires

8. One proposal to address the MAC issue is to use PBB/802.1ah with VPLS.

The VLAN solution for DCs is simply mapped to intra-DC IP or Ethernet paths that
carry the tagged traffic between data center gateways, which forward the traffic down
to the local data center.
VPLS for DCI

In cases where more than 4,000 tenants are desired, other solutions must be employed.
One such option is Virtual Private LAN Service (VPLS). The basic operation of the
VPLS solution is similar to that of the VLAN service except that MPLS (L2TPv3) and
pseudowires are used to interconnect data centers, and VLANs (or stacked VLANs) are
mapped to the pseudowires at the gateways, thus stitching together the data center
VLAN-to-VM mappings. This is shown in Figure 6-15 where the CE represents either
the gateway router/switch or the top of rack switch (ToR), depending on how far down
into the network the architecture requires the VPLS to extend. In the case of the former,
the VLAN-to-VPLS tunnel mapping happens at the gateway, while the mapping hap‐
pens on the ToR in the latter case. Both cases have pros and cons in terms of scale,
operations and management, and resilience to change, but in general the VPLS solution
has the following characteristics:

• Flodding (Broadcast, Multicast, Unknown Unicast)
• Dynamic learning of Mac addresses
• Split-Horizon and full-mesh of PWs for loop-avoidance in core (no STP runs in

the core, so the data center SPT domains are isolated)
• Sub-optimal multicast (though the emergence of Label Switched Multicast may

provide relief)
• The VLAN to pseudowire mapping may place an artificial limit on the number of

tenants supported per physical interface (4K)
• VLAN-based dual homing may require the use of virtual chassis techniques be‐

tween the PE/DCI gateways and pseudowire redundancy (for active/active redun‐
dancy)

• Load balancing across equal cost paths can be only VLAN based (but not flow-
based unless we introduce further enhancements like Entropy Labels or Flow Aware
Transport (FAT) pseudowires)7

While VPLS is an improvement over a simple VLAN or stacked VLAN approach, it
does still have issues. For example, the approach is still encumbered by MAC scaling
problems8 due to data plane learning, similar to the VLAN or stacked VLAN approaches.
These issues will potentially result in issues at the CE points shown in Figure 6-15. Also,
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9. EVPN can also be combined with PBB, propagating B-MAC addresses with EVPN. PEs perform PBB func‐
tionality just like PBB-VPLS C-MAC learning for traffic received from ACs and C-MAC/B-MAC association
for traffic received from the core. Cisco OTV offers some of the characteristics of EVPN but is a Cisco-specific
solution.

10. Because MPLS core networks may be problematic for some, IP/GRE tunnels can also be used to interconnect
the MES(s). Fast convergence is based on local repair on MES-CE link failures.

However, in this scenario, in a non-MPLS core, you obviously lose the potential for MPLS Fast Re-Route
protection of the tunnels. IP-FRR may, depending on your topology, be an adequate substitute that would
require you to run the LSPs over TE tunnels between the MES(s).

due to having to implement and deploy pseudowire tunnels between the PEs in the
network configuration (i.e., either the gateway or the ToR, depending on the architec‐
ture) this also adds the potential for pseudowire scale and maintenance issues.

Figure 6-15. VPLS for DCI (split horizon has eliminated the paths to the target CE via
N-PE2, NPE-4, and alternate LSPs on N-PE3)

EVPN for DCI.   Another MPLS-based solution called Ethernet VPN (EVPN),9 was devel‐
oped to address some of the shortcomings of VPLS solutions. EVPN augments the data
plane MAC learning paradigm with a control plane solution for automated MAC learn‐
ing between data centers. EVPN creates a new address family for BGP by converting
MAC addresses into routable addresses and then uses this to distribute MAC learning
information between PEs in the network. Other optimizations to EVPN have also been
made in order to further optimize MAC learning to enhance its scalability.

EVPN can use a number of different transport LSP types (P2P/P2MP/MP2MP)10 and
can provide some distribution advantages over VPLS:

• Flow-based load balancing and multipathing (layers 2, 3, and 4) in support of
multihoming devices
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• The same flow-based or VLAN-based load balancing for multihomed networks
(this can be based on auto-detection)

• Multicast optimization using MP2MP multicast distribution trees
• Geo-redundancy for PE/gateway nodes

EVPN introduces some new conceptual devices, which are further illustrated in
Figure 6-16:

• The MES-MPLS Edge Switch
• The MFI-EVPN Forwarding Instance
• The ESI-Ethernet Segment Identifier (which is important in Link Aggregation

scenarios)

Figure 6-16 illustrates how, within the data center, local MAC addresses are still learned
through normal data plane learning in the EVPN model. MES(s) can learn local MACs
through other mechanisms as well—management plane protocols or extensions to dis‐
covery protocols like LLDP—but still distribute these addresses to other PEs using split-
horizon and other MAC bridging optimization approaches. The basic operation of
EVPN also populates the table for the new address family in the MES and advertises it
in BGP updates to neighboring MES(s) in order to distribute MAC routes. Furthermore,
a MES injects the BGP learned MAC addresses into their layer 2 forwarding table along
with the associated adjacency info. What differs from the typical VLAN approach de‐
scribed earlier is that this now can be done in a far more scalable manner. For example,
WAN border routers may forward on the label only, and other MES points may only
populate the forwarding plane for active MACs. This differs from having to have each
end point learn every MAC address from each VLAN. Effectively, MAC addresses stay
aggregated behind each MES much in the way BGP aggregates network addresses be‐
hind a network and only distributes reachability to those networks instead of the actual
end point addresses.
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Figure 6-16. EVPN MAC-learning model

In addition to these advantages, EVPN does a lot to reduce ARP flooding, which can
also lead to scalability issues. ARP storms can consume the forwarding bandwidth of
switches very quickly. To this end, the MES performs proxy ARP, responds to ARP
requests for IP addresses it represents, and doesn’t forward ARP messages unless the
BGP MAC routes carry a binding for the requested IP address.

EVPN also improves MAC learning and selective VLAN distribution through the im‐
plementation of BGP policies much in the same way BGP policies are used to enhance
normal IP reachability. Route Targets (RTs) are used to define the membership of a
EVPN and include MES(s) and Ethernet interfaces/VLANs connecting CEs (e.g., hosts,
switches, and routers). RTs can be auto-derived from a VLAN ID, particularly if there
is a one-to-one mapping between an EVPN and a VLAN. Each MES learns the ESI
membership of all other MES in the VPNs in which it participates. This process enables
designated forwarder election and split horizon for BUM traffic (for multihomed CEs).

The example in Figure 6-16 illustrates the capability of EVPN MES(s) to distribute
different MFI to other MES that have members of the same VPNs. This is most often
implemented employing a route reflector to further enhance scalability of the solution.
BGP capabilities such as constrained distribution, Route Reflectors, and inter-AS are
reused as well.
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Also on Figure 6-16, both MES1 and MES4 advertise Ethernet Tag auto-discovery routes
for <ESI1, VLAN1> along with MPLS label and VPNA RT. For example, MES1 adver‐
tises MAC Route in BGP:

<RD-1, MAC1, A1-VLAN, A1-ESI ID, MAC lbl L1, VPN A RT>

In the example, MES2 learns via BGP that MAC1 is dual-homed to MES1 and MES4.
This still works despite the fact that MES4 might not yet have advertised MAC1 because
MES2 knows via the Ethernet Tag auto-discovery routes that MES4 is connected to ESI1
and VLAN1. If MES2 decides to send the packet to MES1, it will use inner label <EVPN
label advertised by MES1 for MAC1> and outer encapsulation as <MPLS Label for LSP
to MES1> or <IP/GRE header for IP/GRE tunnel to MES1>.

MES2 can now safely load-balance the traffic to MAC1 between MES1 and MES4.
Summary comparison of VPLS and EVPN for DCI

As a summary, we think that it is instructional to compare and contrast the last two
solutions for DCI given their similarity. Table 6-1 makes clear that EVPN appears to be
the most optimal solution for DCI.

Table 6-1. Summary comparison of VPLS and EVPN for DCI
Desirable 1.2 extension attributes VPLS E- VPN

VM Mobility without renumbering L2 and L3 addresses ✓ ✓
Ability to span VLANs across racks in different locations ✓ ✓
Scale to few 100K hosts within and across multiple DCs ✓ ✓
Policy-based flexible L2 topologies similar to L3 VPNs ✓
Multiple points of attachment with ability to load-balance VLANs across them ✓ ✓
Active-Active points of attachment with ability to load-balance flows within a single VLAN  ✓
Multi-tenant support (secure isolation, overlapping MAC, IP addresses) ✓ ✓
Control-Plane Based Learning ✓
Minimize or eliminate flooding of unknown unicast ✓
Fast convergence from edge failures based on local repair ✓

SDN Solutions for the Data Center Network
In this section we consider SDN solutions for the modern data center. In particular, we
will discuss how modern data centers that were just described are having SDN concepts
applied to extend and expand their effectiveness, scale, and flexibility in hosting services.
We should note that SDN solutions don’t always mean standard solutions, and some of
the solutions described are vendor proprietary in some form.

As described earlier, traditional data centers contain storage, compute (i.e., servers),
and some network technology that binds these two together. Much in the way that
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servers and applications have been virtualized, so too have networks. In the traditional
network deployment, VLANs were about as virtualized as a network got. In this sense,
the VLANs were virtualizing the network paths between VMs. This was the first step
in the virtualization of the network. As we introduced earlier in the DCI section, there
are a number of protocols that can be used to not only form the network fabric of the
data center, but as you will see, that can be used to also virtualize the fabric. In particular,
we will introduce the notion of network overlays as a concept that allows for the virtu‐
alization of the underlying network fabric, or the network underlay.

The Network Underlay
The network underlay can be comprised of a number of technologies. Generally speak‐
ing, these can be divided up into layer 1, 2, or 3 solutions, but in all the cases, these
solutions are designed to do basically one thing: transport traffic between servers in the
data center. Figure 6-17 demonstrates how an overlay network creates a logical network
over the physical underlay network. Typically the overlay network is created using vir‐
tual network elements such as virtual routers, switches, or logical tunnels. The underlay
network is a typical network, such as an Ethernet, MPLS, or IP network.

Figure 6-17. Data center overlay and underlay network relationships
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Frankly speaking, all of the available solutions will work at providing an underlay net‐
work that carries an overlay. The question is one of how optimal each solution is at what
it does, and how good it is at hosting a particular overlay technology. For example, while
one solution might scale better for layer 2 MAC address learning, it may be terrible
when one considers how this is used to handle VM moves or external cloud bursting.
Another example might scale well for its speed of adapting to changes in the network,
while another might require more time for semi-automated (or even manual) operator
intervention. We will investigate all of these angles in the following section.

VLANs
This chapter is squarely focused on new SDN technologies, but do not lose sight that
simplicity is king when operating a network. To this end, when tenancy of internal
tenants is needed only, and that number does not exceed about 1,000, VLANS are still
the simplest and most effective solution. This is a well-known approach, quite easy to
operate, and is supported on the widest variety of hardware, so the simplest form of a
network overlay is of course a flat IP network that rides over a VLAN substrate or
underlay. This is in fact how data centers were originally constructed. There was no real
need at the time to support multiple tenants, and when there’s a need to segregate re‐
sources based on departmental access, VLANs were invented, but the overlay was still
a relatively flatly addressed IP network. This approach even worked for a short while
for external user access to data centers (remember the Amazon AWS case) until the
number of tenants grew too large, address spaces had to overlap, and the general churn
of these virtualized network elements required very fast (re)-programming of these
resources. In these scenarios, the basic IP over Ethernet network sufficed for a single
tenant and could be easily and unobtrusively extended to support up to about 4,000
tenants using VLANs.

Figure 6-18 illustrates how a basic VLAN approach can be used to implement a localized
data center’s overlay along with an IP overlay and implement a relatively simple DC
interconnection. In the example, three 801.1q VLANs are created for each application
(app, db, and management), and traffic is segregated using these VLANs across the
network. In this approach, the same flat IP addressing space is used within the DCs in
order to provide layer 3 access to the VMs hosting those services. The interface from
the virtual machine to the hypervisor is an access interface. The hypervisor assigns this
interface to the VLAN of the tenant. The server-to-access switch interface, as well as all
switch-to-switch interfaces, are trunk interfaces.
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Figure 6-18. End-to-end tenant VLANs in the data center

While VLAN solutions are quite easy to implement, unless routing is inserted between
VLANs, it has long been known that relying simply on bridging or the Spanning Tree
Protocol (or its variants) does not scale well beyond around 300 hosts on any single
VLAN. The problem with the protocol is that when the number of host MAC addresses
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becomes large, changes, moves or failures result in massive processing inside the net‐
work elements. During these highly busy periods, network elements could miss other
failures or simply be overloaded to the point where they cannot adjust quickly enough.
This can result in network loops or black holes. Early versions of Spanning Tree also
suffered from the issue of wasting equal cost (i.e., parallel) links, in that the protocol
effectively blocked all parallel links to the same bridge except one as its means of pre‐
venting loops. Even the latest versions of these protocols have limited ability to provide
multipath capabilities. Finally, in most cases, bridges can suffer from a loss in forwarding
of several seconds when they reestablish connectivity to other bridge links.

EVPN
Earlier we introduced EVPN as a DCI solution, and in doing so noted how the PE
function could terminate at the DC gateway or the ToR. In the case of the former, we
showed how VLANs (stacked, tagged, or flat) would then be used to form the underlay.
We also pointed out that EVPN, as with VPLS, could be used to extend the number of
tenants in a network beyond the 4,000 VLAN tag limit.

Figure 6-19 illustrates just how EVPN can be employed within a data center to carry
traffic for tenants to other tenants. The general operation is simple in that traffic is
transmitted as an MPLS encapsulated frame containing an Ethernet frame. MPLS tun‐
nels terminate at the physical or virtual switch, which then de-capsulates traffic and
delivers it as a layer 2 frame to the virtual or physical host, depending on the imple‐
mentation. Similarly, transmission of layer 2 frames from the end stations are encap‐
sulated into an MPLS tunnel and delivered to other end hosts. This behavior is identical
to what was explained earlier.
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Figure 6-19. EVPN (data plane)

And Figure 6-20 demonstrates how the control plane establishes a full mesh of transport
MPLS LSPs between the access and core switches using LDP or RSVP. The access
switches run MP-IBGP to signal MAC learning reachability information in the same
way described previously in the DCI section.
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Figure 6-20. EVPN (control plane)

It is important to consider the scaling characteristics of this approach with other meth‐
ods described earlier. In particular, since the physical network is a layer 3 (MPLS) net‐
work, it will scale and be operated in the same well-known ways that MPLS networks
are. Similarly, all layer 2 traffic is tunneled across the network over MPLS, which is good
for scaling because it avoids having large layer 2 domains and the associated scaling
problems with them. Also comparing this approach to VxLAN or NVGRE, one must
consider the number of actual tunnels that must be established and managed. In this
case, there generally should be fewer than the VxLAN and NVGRE cases because stacked
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labels can be employed. Further extending the scale of this approach in terms of pro‐
cessing load on the switches is the use of BGP route reflectors in this scheme. These can
enhance the solution very much. Finally, use of XMPP between the local switches (or
vSwitches) and the MP-IBGP points in the architecture can potentially lighten the pro‐
tocol configuration load on the end hosts.

Locator ID Split (LISP)
The current routing and addressing architecture employed within the Internet relies on
a single namespace to express two functions about a network element: its network
identity and how it is attached to the network. In essence, the problem is that we want
to preserve the device’s identity, regardless of which network or networks to which it is
connected. The addressing scheme employed today was invented when network ele‐
ments were relatively static, and the assumption was that the network-to-element ID
binding was relatively static, too. Today we have to consider modern user behavior,
where mobile elements rapidly move between base stations or radio access networks.
That makes managing network connections, resources, and other things that should be
pinned to a network element based on its identifier difficult because its entire address
could change when it changes networks. Furthermore, in cases where network elements
are multihomed, traffic engineering (TE) is needed, or address allocations are employed
that prevent aggregation.

This problem has been exacerbated by two conditions. The first is IPv4 address space
depletion, which has led to a finer and finer allocation of the IPv4 addresses space, which
results in less aggregation potential. The second is the increasing occurrence of dual-
stack routers supporting both IPv4 and IPv6 protocols. IPv6 did not change anything
about the use of IP addresses and so still suffers from the same issues that IPv4 does.

A number of people at the IETF recognized these issues and sought to correct them by
creating a new address and network element address split called Locator ID Split, or
LISP, as it’s now known. They created a network architecture and set of protocols that
implemented a new semantic for IP addressing. In essence, LISP creates two namespaces
and uses two IP addresses for each network device. The first is an Endpoint Identifier
(EID) that is assigned to an end-host and always remains with the host regardless of
which network it resides on. The second is a Routing Locator (RLOC) that is assigned
to a network device (i.e., a router) that makes up the global routing system. It is the
combination of these routers and the unique device identifier and the protocols used
to manage them across the Internet that comprise the LISP system and allows it to
function.

The separation of device identifier from its network identifier offers several advantages:

• Improved routing system scalability by using topologically-aggregated RLOCs.
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• Improved traffic engineering for cases where multihoming of end-sites are em‐
ployed.

• Provider independence for devices that are assigned an EID from a common EID
space. This facilitates IP portability, which is an important feature, too.

• LISP is a simple, incremental, network-based implementation that is deployed pri‐
marily in network edge devices, therefore requiring no changes to host stacks, Do‐
main Name Services, or the local network infrastructure used to support those
hosts.

• IP mobility (EIDs can move without changing—only the RLOC changes!)

The concept of a location/ID separation has been under study by the IETF and various
universities and researchers for more than 15 years. By splitting the device identity, its
Endpoint Identifier, and Routing Locator into two different namespaces, improvements
in scalability of the routing system can be achieved through greater aggregation of
RLOCs.

LISP applies to data centers by providing the capability to segment traffic with minimal
infrastructure impact, but with high scale and global scope. This is in fact a means by
which virtualization/multitenancy support can be achieved—much in the way we have
described VLANs or VPNs within DCs. This is accomplished when control and data
plane traffic are segmented by mapping VRFs to LISP instance IDs, making this overlay
solution highly flexible and highly scalable. This also has the potential for inherently
low operational cost due to the mapping being done automatically by the DC network
switches.

An additional benefit of this approach is that data center VM-Mobility can also provide
location flexibility for IP endpoints not only within the data center network, but due to
using the IP protocol, also across the Internet. In fact, VM hosts can freely move between
data centers employing this scheme because the server identifiers, which are just EIDs,
are separated from their location (RLOC) in the same way any other implementation
of LISP would be. Thus this solution can bind IP endpoints to virtual machines and
deploy them anywhere regardless of their IP addresses. Furthermore, support of VM
mobility across data center racks, rows, pds, or even to separate locations is possible.
This method can also be used to span organizations, supporting cloud-bursting capa‐
bilities of data centers.

VxLan
Virtual Extensible LAN (VxLAN) is a network virtualization technology that attempts
to ameliorate the scalability problems encountered with large cloud computing de‐
ployments when using existing VLAN technology. VMware and Cisco originally created
VxLAN as a means to solve problems encountered in these environments. Other backers
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of the technology currently include Juniper Networks, Arista Networks, Broadcom,
Citrix, and Red Hat.

VxLAN employs a VLAN-like encapsulation technique to encapsulate MAC-based layer
2 Ethernet frames within layer 3 UDP packets. Using a MAC-in-UDP encapsulation,
VxLAN provides a layer 2 abstraction to virtual machines (VMs) that is independent
of where they are located for reasons similar to why LISP was invented. Figure 6-21
demonstrates the packet format employed by VxLAN. Note the inner and outer MAC/
IP portions that provide the virtual tunneling capabilities of this approach.

Figure 6-21. VXLAN packet format

As mentioned earlier, the 802.1Q VLAN Identifier space is limited to only 12 bits, or
about 4,000 entries. The VxLAN Identifier space is 24 bits, allowing the VxLAN Id space
to increase by over 400,000 percent to handle over 16 million unique identifiers. This
should provide sufficient room for expansion for years to come. Figure 6-21 also shows
that VxLAN employs the Internet Protocol as the transport protocol between VxLAN
hosts. It does this for both unicast and multicast operation. The use of IP as the transport
is important as it allows the reach of a VxLAN segment to be extended far beyond the
typical reach of VLANs using 802.1Q.

Fundamentally, VxLAN disconnects the VMs from their physical networks by allowing
VMs to communicate with each other using a transparent overlay that is hosted over
physical overlay networks. These overlay networks can also span layer 3 boundaries in
order to support intra-DC scenarios. An important advantage to VxLAN is that the
endpoint VMs are completely unaware of the physical network constraints because they
only see the virtual layer 2 adjacencies. More importantly, this technology provides the
capability to extend virtualization across traditional network boundaries in order to
support portability and mobility of VM hosts. VxLAN allows for the separation of log‐
ical networks from one another much like the VLAN approach could, simplifying the
implementation of true multitenancy, but extends it further by also exceeding the 4,000
VLAN limit with a much larger virtualization space.

The normal operation of VxLAN relies on Virtual Tunnel Endpoints (VTEPs) that
contain all the functionality needed to provide Ethernet layer 2 services to connected
end systems. VTEPs are located at the edges of the network. VTEPs typically connect
an access switch to an IP transport network. Note that these switches can be virtual or
physical. The general configuration of a VxLAN VTEP is shown in Figure 6-22.
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Figure 6-22. VTEP as part of a virtual (or physical) switch connecting VMs together
across a data center infrastructure

Each end system connected to the same access switch communicates through the access
switch in order to get its packets to other hosts. The access switch behaves in the same
way a traditional learning bridge does. Specifically, it will flood packets out all ports
except the one it arrived on when it doesn’t know the destination MAC of an incoming
packet and only transmits out a specific port when it has learned a forwarding desti‐
nation’s direction. Broadcast traffic is sent out all ports, as usual, and multicast is handled
similarly. The access switch can support multiple bridge domains, which are typically
identified as VLANs with an associated VLAN ID that is carried in the 802.1Q header
on trunk ports. However, in the case of a VxLAN enabled switch, the bridge domain
would instead by associated with a VxLAN ID.

Under normal operation, the VTEP examines the destination MAC address of frames
it handles, looking up the IP address of the VTEP for that destination. The MAC-to-
OuterIP mapping table is populated by normal L2 bridge learning. When a VM wishes
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to communicate with another VM, it generally first sends a broadcast ARP, which its
VTEP will send to the multicast group for its VNI. All of the other VTEPs will learn the
Inner MAC address of the sending VM and Outer IP address of its VTEP from this
packet. The destination VM will respond to the ARP via a unicast message back to the
sender, which allows the original VTEP to learn the destination mapping as well.

When a MAC address moves to a different physical or virtual switch port (i.e., a VM is
moved), the other VTEPs find its new location by employing the same learning process
described previously whereby the first packet they see from its new VTEP triggers the
learning action.

In terms of programmability, VxLAN excels by providing a single interface to author‐
itatively program a layer 2 logical network overlay. Within a virtualized environment,
VxLAN has been integrated into VMware’s vSphere DVS, vSwitch, and network IO
controls to program and control VMs, as well as their associated bandwidth and security
attributes.

NVGRE
The Network Virtualization using Generic Routing Encapsulation (NVGRE) protocol
is a network virtualization technology that was invented in order to overcome the
scalability problems associated with large data center environments that suffer from the
issues described earlier in the VLAN underlay option. Similar to VxLAN, it employs a
packet tunneling scheme that encapsulates layer 2 information inside of a layer 3 packet.
In particular, NVGRE employs the Generic Routing Encapsulation [GRE] to tunnel
layer 2 packets over layer 3 networks. At its core, NVGRE is simply an encapsulation of
an Ethernet layer 2 Frame that is carried in an IP packet. The result is that this enables
the creation of virtualized L2 subnets that can span physical L3 IP networks. The first
specification of the protocol was defined in the IETF in draft-sridharan-virtualization-
nvgre-00. Its principal backer is Microsoft.

NVGRE enables the connection between two or more L3 networks and makes it appear
to end hosts as if they share the same L2 subnet (Figure 6-23). Similarly to VxLAN, this
allows inter-VM communications across L3 networks to appear to the end stations as
if they were attached to the same L2 subnet. NVGRE is an L2 overlay scheme over an
L3 network.
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Figure 6-23. NVGRE overlay networks: enabling network scalability for a cloud infra‐
structure

NVGRE uses a unique 24-bit ID called a Tenant Network Identifier (TNI) that is added
to the L2 Ethernet frame. The TNI is mapped on top of the lower 24 bits of the GRE
Key field. This new 24-bit TNI now enables more than 16 million L2 (logical) networks
to operate within the same administrative domain, a scalability improvement of many
orders of magnitude over the 4,094 VLAN segment limit discussed before. The L2 frame
with GRE encapsulation is then encapsulated with an outer IP header and finally an
outer MAC address. A simplified representation of the NVGRE frame format and en‐
capsulation is shown in Figure 6-24.
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Figure 6-24. NVGRE packet format

NVGRE is a tunneling scheme that relies on the GRE routing protocol as defined by
RFC 2784 as a basis but extends it as specified in RFC 2890. Each TNI is associated with
an individual GRE tunnel and uniquely identifies, as its name suggests, a cloud tenant’s
unique virtual subnet. NVGRE thus isn’t a new standard as such, since it uses the already
established GRE protocol between hypervisors, but instead is a modification to an ex‐
isting protocol. This has advantages in terms of operations and management, as well as
in terms of understanding the other characterizes of the protocol.

The behavior of a server, switch, or physical NIC that encapsulates VM traffic using the
NVGRE protocol is straightforward. For any traffic emanating from a VM, the 24-Bit
TNI is added to the frame, and then it is sent through the appropriate GRE tunnel. At
the destination, the endpoint de-encapsulates the incoming packet and forwards that
to the destination VM as the original Ethernet L2 packet.

The inner IP address is called the Customer Address (CA). The outer IP address is called
the Provider Address (PA). When an NVGRE endpoint needs to send a packet to the
destination VM, it needs to know the PA of the destination NVGRE endpoint.

OpenFlow
We have described a number of underlay approaches that map loosely to variants of
existing layer 2 network protocols. The one exception to this is the use of the OpenFlow
protocol to establish and manage the underlay network over which, say, an IP network
can be overlaid. In Chapter 3 and Chapter 10, we described the protocol’s general op‐
eration, and so we will not repeat it here. However, it is useful to show how such an
underlay would be constructed, and fortunately, it is quite simple.

Figure 6-25 demonstrates how an OpenFlow controller is setup in the canonical fashion
to control a zone of a network’s switches. Note that while we show the BigSwitch Flood‐
light controller in the figure, any OpenFlow controller can be swapped into this picture
with basically identical operation. The switches in the figure are generally setup to be
completely controlled by the controller, although as we described in Chapter 3, the
hybrid mode of operation is also a distinct (and practical) possibility here. Each switch
has an established control channel between it and the controller over which the Open‐
Flow protocol discourse takes place. Note that the switches that are controlled are shown
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as both virtual (vSwitch) and real (switch). It is important to understand that generally
speaking, it does not matter whether the switch is virtual or real in this context.

The switches are generally constructed and configured by the controller to establish
layer 2 switching paths between the switches, and will also incorporate layer 3 at the
ingress and egress points of the network to handle things such as ARP or other layer 3
operations. We should note that it is possible to construct a true combined layer 2 and
3 underlay using this configuration, but the general consensus is that this is too difficult
in terms of scale, resilience to failure, and general operational complexity if implemented
this way. These issues were discussed in Chapter 4.

Figure 6-25. Creating a layer 2 network underlay using OpenFlow-controlled switches
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Network Overlays
As mentioned earlier, while SDN has not invented the notion of logical network overlays,
this is clearly one of the things that drives and motivates SDN today, especially in data
center networks. Earlier in this chapter, we introduced the notation of a network un‐
derlay. The underlay is by and large the network infrastructure technologies employed
by data center and other network operators today. With some exceptions, such as
VxLAN and NGVRE, these basic technologies have been modified or augmented in
order to support additional virtualization, user contexts, or entire virtual slices of the
network itself. As with the variety of network underlays, a variety of network overlays
exist. We will describe each of these, starting with the general concepts of where tunnels
can be terminated that span between virtual machines.
Tunnels terminated at the vSwitch

Earlier in Chapter 4, we described virtual swtiches or vSwitches. A number of these exist
both in the open source and commercial spaces today. Arguably, the most popular is
the Open Virtual Switch, or OVS. We will generally refer to OVS in the rest of this
chapter.

In this class of solution, you establish tunnels between vSwitches to carry the tenant
traffic between other vSwitches. Since vSwitches generally reside within the hypervisor
space, the vSwitch acts as a local termination and translation point for VMs. It also has
the advantage of it not being modified in any way to participate in the overlay (or un‐
derlay for that matter). Instead, a VM is presented with an IP and MAC address, as they
are in a non-overlay environment and happily exist. There are two subclasses of solu‐
tions when terminating tunnels at vSwitches: single and multitiered. The former solu‐
tion is typical of many of the standards-based solutions that we will get into detail about
a little later but generally depict a network comprised of multiple logical and physical
tiers that when interconnected, form the underlying infrastructure that the overlay rides
over. This approach is demonstrated in the Figure 6-26. In the figure, the VMs are shown
as A and B boxes. The letters denote group membership of a particular overlay, or VPN.
The larger boxes they reside in represent the physical host machine (server). The rec‐
tangle within this box represents the vSwitch. Observe how logical network tunnels are
terminated and emanate from this point. This is the case regardless of the underlying
network or underlay.
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Figure 6-26. Overlays—tunnels terminated at the vSwitch for a multitier network

The other approach to overlays is a single-tiered approach. These are generally referred
to as data center fabrics and most often are vertically integrated solutions that are largely
proprietary, vendor-specific solutions. In these solutions, each overlay tunnel begins
and ends in a vSwitch as they did in the multitiered solution, as shown in Figure 6-27.
However, it differs from the multitiered solution in that these solutions generally es‐
tablish a full mesh of tunnels among the vSwitches that establish a logical switching
fabric. This potentially makes signaling and operations of this network simpler because
the network operator (or their OSS) need not be involved in any special tunnel signaling,
movement, or maintenance: instead, the fabric management system takes care of this
and simply presents tunnels to the VMs as if they were plugged into a real network.
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11. The option of tunneling layer 2 over layer 3 tenant network traffic is considered as a separate variation.

12. When MPLS is used, the outer IP header is replaced by an MPLS header, and the tunnel header is replaced
by a stacked MPLS header.

Figure 6-27. Overlays—tunnels terminated at the vSwitch using a single-tier network
(a.k.a. a fabric)

Network Overlay Types
As mentioned earlier, network overlays exist that emulate different logical layers of the
network. These include layers 2 and 3, and more recently one approach that tightly
combines layer 1 with layer 2.
Layer 2 overlays

It can be argued that the majority of overlay tunneling protocols available encapsulate
layer 2 tenant network traffic11 over some layer 3 networks, although OpenFlow is the
obvious variant in this case, where the usual approach is to construct a network out of
entire layer 2 segments, as described earlier. The layer 3 network is typically IP, although
as we have seen can be OpenFlow, GRE, or even MPLS, which is technically layer 2.5
but is counted here. The exact format of the tunnel header varies depending on the
tunneling encapsulation, but the basic idea is approximately12 the same for all encap‐
sulations, as shown in Figure 6-28.
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13. E.g., Microsoft MSCS, Veritas Cluster Server, Solaris Sun Cluster Enterprise, VMware Cluster, Oracle RAC
(Real Appl.Cluster), HP MC/ServiceGuard, HP NonStop, HP Open VMS/TruCluster, IBM HACMP, EMS/
Legato Automated Availability Manager

The focus around layer 2 networking was historically driven by server clustering tech‐
nologies13 and storage synchronization, as well as the need for the network operator of
OSS to have more freedom in binding IP addresses to VMs. However, these applications
are no longer exclusively layer 2; we are seeing more and more migration to layer 3.

Figure 6-28. Layer 2 encapsulation for overlay tunnels

202 | Chapter 6: Data Center Concepts and Constructs

http://www.it-ebooks.info/


All of the tunnel encapsulation used in these solutions uses some sort of tenant identifier
field in the tunnel header to de-multiplex the packets received from the tunnel into the
context of the right vswitch bridge, as shown in Figure 6-29:

• GRE uses the 32-bit GRE key [GRE-KEY-RFC] (32 bits).
• VxLAN uses the 24-bit VxLAN segment ID, also known as the VxLAN Network

Identifier (VNI).
• NVGRE uses the 24-bit Virtual Subnet ID (VSID), which is part of the GRE key.
• VmWare/Nicera’s STT uses the 64-bit Context ID.
• MPLS uses the 20-bit inner label.

The VNI in VxLAN, the VSID in NVGRE, and the context ID in STT have global scope
across the data center. The inner label in MPLS has local scope within the vswitch, too.

Figure 6-29. Using the tenant ID in the tunnel header to de-multiplex to the correct
tenant

Layer 3 overlays

Another type of network overlay are layer 3 (i.e., IP) overlays. These overlays present
IP-based overlays instead of layer 2 overlays. The difference between these overlays and
layer 2 overlays is that instead of presenting a layer 2 logical topology between VMs, it
presents a layer 3 network. The advantages of these approaches are analogous to existing
layer 3 VPNs. In particular, private or public addressing can be mixed and matched
easily, so things like cloud-bursting or external cloud attachment is easily done. Moves
are also arguably easier. In this approach, rather than termination of a layer 2 tunnel at
the vSwitch, a layer 3 tunnel is terminated at a vRouter. The vRouter’s responsibilities
are similar to those in a vSwitch except that it acts as a Provider Edge (PE) element in
a layer 3 VPN. The most typical of these approaches proposed today is in fact a modified
layer 3 MPLS approach that integrates with a vRouter inside of the hypervisor space.
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Hybrid overlay-underlay approach

One approach that differs from the strictly layer 2 or strictly layer 3 approaches just
described is one from a new startup called Plexxi. This solution is an underlay solution
but at the same time provides a closely integrated overlay (Figure 6-30). We refer to this
as a hybrid overlay-underlay. In the case of overlays, operators must still be conscious
of network capacity, as this is a finite resource. Overlays are entirely unaware of the
network, and as the entire overlay administrator knows, there is infinite bandwidth
supporting them. In traditional network designs, including leaf/spine designs, capacity
is statically structured. Studies have shown that much of the capacity in such a network
remains idle. Plexxi’s approach is to collapse the data center network into a single tier
and to interconnect switches within this tier optically. This results in potentially fewer
boxes and far less cabling and transceivers as part of this solution. When combined with
dynamically maintained affinities, this means applications can have the capacity they
require when they need it without structuring an abundance of otherwise unused ca‐
pacity ahead of time.

In this approach, overlays are rendered into affinities, allowing capacity in the network
to be managed dynamically, even though endpoints are hidden within the overlay. This
is possible because the data required to do this is harvested from the overlay manage‐
ment system by a connector, which in turn pushes the data to the Plexxi controller via
its API. The Plexxi controller is discussed in detail in Chapter 4, so it is not discussed
further here.

Figure 6-30. Plexxi’s approach to a hybrid overlay and underlay
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Conclusions
In this chapter, we presented a number of concepts and constructs that are used to create,
run, maintain, and manage modern multitenant data centers. Some of these concepts
are variations on an old theme, while some are new and driven from the SDN movement.
In all cases, these solutions provide virtualized network access between virtual machines
that wish to communicate privately from the other tenant VMs hosted in a data center
operated by a single service provider. In some cases, these technologies can even be used
to facilitate VMs that wish to communicate across data centers that span multiple pro‐
viders. In some cases, the technologies explained allow these logical networks to span
multiple data centers owned and operated by the same enterprise, or even multiple
enterprises. Later in the book, we will consider some of the design implications of using
one technology over another when implementing a data center.
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CHAPTER 7

Network Function Virtualization

Introduction
Network Function Virtualization (NFV) builds on some of the key SDN topics intro‐
duced in prior chapters, including control/data plane separation, virtualization, SDN
controllers, and data center concepts (particularly orchestration applications).
Figure 7-1 illustrates the intersection of these topics.

Figure 7-1. The intersection that makes Network Function Virtualization possible

Network Function Virtualization has its roots in several previously described network
operations problems, particularly the implications of bundling services by network
equipment manufacturers within their platform OS. NFV also applies to appliance
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1. http://www.tid.es/es/Documents/NFV_White_PaperV2.pdf; http://www.lightreading.com/document.asp?
doc_id=226204&

2. ETSI is a SDO (Standards Development Organization). Access below the surface of the portal for NFV
work requires ETSI membership.

vendors in a way that does not take advantage of the processing scale/innovation seen
by many customers in their data centers.

Many large service providers had their own cloud offerings and thus an assumption of
virtual machine orchestration in their operation. They were also tracking the I/O in‐
novations by Intel in this space (VT-d, DDIO, DPDK, and SR-IOV support). These
providers formally declared their desire for service virtualization and sponsorship of
standards development around service virtualization through a paper published at a
Layer123 SDN Conference (Darmstaad, Germany) in the fall of 2012.1 This work ulti‐
mately ended up being sponsored within ETSI.2 In addition to this paper, providers have
repeatedly voted with their wallets in their moves toward commodity-priced, ODM-
built, top-of-rack switches with off-the-shelf software. Behind the scenes, vendors were
also already tracking the evolving I/O capabilities of COTS platforms and evaluating
strategies for the next generation of service appliances and the future of dedicated net‐
work platforms that incorporate a large services component. These include the Broad‐
band Network Gateway (BNG), its parallel in the cable space (CMTS), the node-B in
the mobile space, and other service-oriented access and aggregation platforms.

What has evolved is a discussion of network services and functions into three general
categories: simple virtualized services, service chaining, and services or platform vir‐
tualization. In all these discussions an SDN controller is involved, at least marginally in
the case of simple virtualized services, and in others, it’s arguably required.

Virtualization and Data Plane I/O
Virtualization of network services doesn’t necessarily mean separate hypervisor parti‐
tioned VMs that contain each service instance; instead, it could also mean:

• Services implemented in a machine with multiple/compartmentalized OS(s)
• Services implemented within the hypervisor
• Services implemented as distributed or clustered as composites
• Services on bare metal machines
• Services implemented in Linux virtual containers

These methods may share state by using some form of Network Attached Storage (NAS)
or other shared storage/memory architectures. See Figure 7-2 for a sketch illustrating
these methods.
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3. A short list of management benefits (if you skipped Chapter 6): VM lifecycle management, storage manage‐
ment, VM placement optimization, VM snapshots, VM migration, disaster recovery, performance monitor‐
ing, compliance management, and capacity management.

Virtual machines provide tremendous advantages with respect to management3 and are
thus pursued as a primary vehicle for NFV. Linux containers have advantages in density
(more instances per host) and performance but lack the management ecosystem and
OS flexibility of virtual machines. Of course, bare metal machines trump both options
when it comes to performance but are often considered behind the curve in terms of
flexibility and management.

Figure 7-2. Methods of virtualization survey: hypervisor partitioned (A), compartmen‐
talized OS (B), bare metal (C), hypervisor embedded (D), and distributed/clustered
composite functions (E); two of these methods (A and B) also are depicted sharing state
through shared storage (F)

Technologies like the Virtual Ethernet Port Extension (VEPA) port extension may also
present an opportunity to provide per-VM services in a switch/router context using
built-in or adjunct services.

Virtualization of network services will introduce reliability concerns that NFV practices
and recommendations need to address:
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4. Paravirtualization allows for the relocation of the execution of critical tasks from the virtual domain to the
host domain by providing hooks that allow the guest and host OS to interact (for those tasks). Xen, VMware
(external), and KVM (hypervisors) all use Virtio for I/O paravirtualization.

• The introduction of the hypervisor and the potential of multiple virtualized services
on the same physical hardware can lead to contention for physical resources, re‐
sulting in a potential degradation experienced by individual services/functions or
a whole chain via that single component. Not only will the NFV orchestration sys‐
tem need to monitor for such degradation, it will need visibility into the hypervisor
and host resources to troubleshoot and potentially isolate/mitigate the contention.

• The hypervisor itself introduces a potential single point of failure (SPOF) that can
impact many concurrent VMs on a host and potentially many different service
chains.

• The hypervisor virtual switch can congest while serving the multiple vNICs of the
various VMs and needs to be able to identify and prioritize control traffic to avoid
application and management failure.

• Additionally, the hypervisor can isolate the applications from awareness of changes
in physical machine state like failure of a NIC port. This management awareness
needs to be bridged by SDN controller and Orchestration cooperation.

• Finally, virtual machines can also be migrated while operating as part of a high
availability (HA) strategy. This behavior can impact a service chain in different
ways, and so this behavior is sometimes intentional or unintentional as part of this
strategy insofar as being used for HA capabilities.

Data Plane I/O
Generally speaking, advances in data-plane I/O have been key enablers to running
services on COTS hardware. Because the hypervisor vSwitch used in NFV/service vir‐
tualization methods adds an additional performance overhead for I/O simply because
virtualization/abstraction is not free, there have been evolving penalty mitigation hard‐
ware and software strategies. I/O acceleration techniques that are software (OS or hy‐
pervisor) based include Virtio and SR-IOV:

• Virtio is the main platform for disk and network I/O virtualization in Linux,
FreeBSD, and other operating systems. Virtio provides a layer of abstraction over
devices in a para-virtualized4 hypervisor/VMM and provides I/O benefits when
compared to full virtualization.

• SR-IOV (PCI-SIG Single Root I/O Virtualization) works with the class of I/O hard‐
ware built around PCIe technology. This PCIe specification splits a device into
multiple PCI Express Requester IDs (it splits physical functions into lighter-weight
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5. A quick mention for their (a bit more into the weeds for a surface treatment) AVX Extensions—a 256-bit
Instruction Set Architecture (ISA) built on legacy 128-bit SIMD (SSEx—with enhancements) and 64-bit
SIMD (MMX) ISA extensions; supported by GCC v4.6, Linux kernel 2.6.30, and the Intel C++ Compiler 12.1.

virtual functions), allowing the I/O MMU to distinguish between individual traffic
streams, apply memory/interrupt translations, and perform delivery directly to a
VM (each PCI Express virtual function, mapped to an ID, can be assigned to a VM).
This bypasses the software switch layer and reduces the impact of software emula‐
tion on I/O. The mapping ratio of physical device to virtual device is 1:256.
The PCIE virtual functions appear to be hardware devices to the VM. All data
packets flow directly between the specific guest OS and the virtual function through
an independent memory space, interrupts, and DMA stream. I/O throughput, CPU
utilization, and latency are all improved.
SR-IOV has both hardware (NIC) and software support requirements that translate
into the BIOS as well as in the operating system instance or hypervisor.

Further acceleration of I/O can be bound in specific vendor hardware I/O enhancements
(NIC and CPU).

Intel has been honing a series of I/O performance boosts for developers that have been
progressing with the capabilities of their CPUs and NICs (those based on Intel archi‐
tecture), including:

• Pure hardware design improvement—pipeline depth, direct cache access, integra‐
tion of the memory controller, and integration of high bandwidth PCIe Gen3.5

• Intel Virtualization Technology (Intel VT)—VTx, c, and d.
• VT-x provides CPU-level hardware assist for VM migration and 32-bit guests

(supported by VMware, Microsoft, Xen, KVM, Citrix, Red Hat, Novell, and Paral‐
lels).

• VT-d accelerates I/O virtualization by enabling direct assignment of an I/O device
to a VM (requires BIOS support on OEM platforms, and a wide variety of hyper‐
visor/VMM support).

• VT-c hardware assists in Intel Ethernet for network and storage connectivity, in‐
cluding VMDq and SR-IOV. Virtual Machine Device Queues (VMDq) refers to the
sorting/grouping of network packets with multiple queues using LAN silicon in‐
stead of the VMM.

• Intel QuickAssist technology that enables Middleware for accelerated packet han‐
dling workloads (e.g., DPI, cryptography). Applications can integrate at different
levels: program to the Intel QuickAssist technology API or program to open source
framework (e.g., OpenSSL libcrypto, Linux kernel crypto API—scatterlist, and zlib)
through patches/shims.
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6. 6Wind features a set of vEPC products for Intel hosts that features their dataplane I/O enhancements.

7. Intel acquired Wind River.

8. Introduced with Sandy Bridge CPU and Intel Ethernet PCIe I/O devices.

9. Intel has developed a DPDK-enhanced version of ovswitch for the public domain and works with major
virtualiztion projects (KVM, Xen, UML, and xVM).

• Commercial integration partners (e.g., 6Wind6 and Wind River7) offer scheduling
and other enhancements that dedicate cores to packet I/O integrated via special
packaging (e.g., Wind River Linux, and Wind River Hypervisor).

• Intel Data Direct I/O Technology (Intel DDIO)8—leverages integrated PCIe lanes
on the CPU, reducing memory accesses and speeding up CPU data transfer, which
is sometimes referred to as NIC core pinning.

• Intel DPDK9—Intel’s most recent innovation in I/O virtualization improvements,
Dataplane Development Kit (Figure 7-3), provides data plane libraries and opti‐
mized (poll-mode) NIC drivers (for Intel NICs) in Linux user space that provide
advanced queue and buffer management, and flow classification through a simple
API interface (supported via a standard tool chain—gcc/icc, gdb, and profiling
tools).

Figure 7-3. Intel DPDK

212 | Chapter 7: Network Function Virtualization

http://www.6wind.com
http://www.it-ebooks.info/


10. RDMA is possible in Infiniband networks, but these are less familiar outside of the data center environment.

11. The feasibility of RoCE assumes some of the attributes present in a DCB (Data Center Bridging) environment
in which the separate priorities for different streams can be treated as separate pipes and latency can be
lowered or bounded. In this environment, RDMA provides remote memory access API (an alternative to the
Berkeley socket API) functionality that is bounded by an Ethernet broadcast domain (RoCE is a link layer
protocol that requires some mapping between its GID system and the MAC).

12. PCoIP hasn’t been proposed as a virtualization strategy for NFV (to date) and is used only to illustrate the
potential of data plane optimizations in the NFV space.

NIC vendors (other than Intel) are not without their own I/O acceleration tricks:

• RoCE (RDMA over Converged Ethernet) is potentially useful application of APIs
for cluster computing between/among the virtualized network functions10 (an I/O
virtualization technique). Mellanox is a primary proponent of RoCE technology
and its potential use in NFV. Their NICs accelerate RoCE support and provide
dynamically linked, user-space libraries that offload network packet processing
from the CPU by allowing applications to directly access the NIC.11

• Similarly, other specific, specialized virtual application acceleration (e.g., PCoIP—
Teradici offers NICs optimized for PCoIP) could potentially find applicability in
the NFV virtual services space.12

There is a difference between (raw) data-plane I/O and data-plane processing (e.g.,
applying Access Control Lists or performing packet transformations at the vSwitch or
bridge) that may have some bearing the efficacy of some virtualized functions/solutions.
The history of routing/switching development has numerous examples of throughput
fall-off in the presence of such operations (that were successfully optimized over time).

I/O Summary
While a number of details have been presented here, the net-net is that a great deal of
scrutiny and effort is being applied to reducing interrupt density, context switching, and
buffer memory copies (i.e., zero-copy strategies). This effort is primarily driven by the
explosion in development of virtualized services and is quite appropriate due to their
inherent I/O component and the need to improve overall performance and scale. Going
forward, the most important goal for NFV will be to find optimization methods that
the community deems acceptably open (i.e., not tied to a single vendor’s hardware
technology), unless an obvious de facto hardware standard evolves, potentially like the
ones just described.
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Services Engineered Path
In 2010, a proposal to decouple the Service and Network infrastructure (plane) was
proposed by Jim Guichard, then a principal architect in the CTO Office at Juniper
Networks. The Service Engineered Path (SEP) concept (Figure 7-4) was introduced as
a potentially new means of service delivery for the Service Provider community—a
Juniper-specific solution, but one that solved the problem prior to any standardization
of such a concept.

The problem statement addressed in SEP was that service providers were constrained
in making new service offerings by the need to deploy the service appliances (or dedi‐
cated services blades) that would comprise the service offering. Service offerings in‐
cluded firewalls, Intrusion Detection Systems (IDS), Intrusion Prevention Systems
(IPS), load balancers, and SSL off-loaders that were run within the edge routers that
would serve their projected markets.

These constraints made service introduction laborious and disruptive to network op‐
eration and put a premium on predicting the markets for a service where you could
have too few subscribers and you have stranded resources, or too many subscribers and
then need to install more appliances/blades.

The motivation for the idea was manifold:

• Network devices that provide Service Enabling Technologies (SETs) would be
transparent to the general network infrastructure.

• Changes/additions/upgrades to one or more service instances wouldn’t affect rout‐
ing in the network, providing a more stable service introduction environment.

• Provide flexible service SET and instance placement, and streamlined capacity
planning of services.

• Faster time to market for services from a design, upgrade, testing, and deployment
perspective.

• Edge routers need not be upgraded every time a new service is added or upgraded
with new functionality.

• Providing the ability to link together services of differing types, thereby enabling
new and innovative bundled services.

Basically, these providers could benefit both in cost and operations if these SETs could
be pooled locally or remotely (the same basic appeal of host virtualization in data cen‐
ters).

New services could be created by identifying qualifying flows at the edge and steering
them through these SETs via a SEP (Service Engineered Path), which could be
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constructed using the overlay technologies available at the time: VLANs, MPLS, or IP
tunnels.

Figure 7-4. Basic SEP concept

The construction of service was a hierarchy of the following components:
Service

A service function, application, or content used singularly or in collaboration with
other SETs to enable a service.

SET Sequence
Predetermined sequence of SETs that form the service.

Set Sequence Path
As an instance of a SET may be available at multiple points in the network, there
are potentially several combinations of Service Nodes that could form part of the
SET sequence. The SET sequence path is a list of [Service Node, SET] combinations
available that could be used to satisfy the service.

A service orchestration and registration service was envisioned to facilitate provisioning
and ongoing management.

Traffic was originally identified and steered onto the path using Dynamic Service Flow
Filters, and the paths themselves were controlled by MPLS encapsulation.

As time went by, SDN technologies—most notably PCE and OpenFlow—were intro‐
duced (Figure 7-5). The idea was refined, though there was some dabbling with the
concept of using LDP label distribution as a potential way of creating the overlay
abstraction/encapsulation.

Services Engineered Path | 215

http://www.it-ebooks.info/


Figure 7-5. Evolved SEP concept with OpenFlow, ALTO (topology), and PCE

Virtualization techniques and virtual I/O improvements were just beginning to evolve
when the SEP concept was introduced, so the wholesale virtualization of the service
plane on COTS wasn’t an integral part of the proposal as it is now with ETSI NFV.
However, the genesis of the ideas of separating the service plane, network function
virtualization, and service chaining can be traced back to this concept (as do some
commercial products).

Ultimately (and unfortunately), network function virtualization became the superset
terminology for earlier concepts like those introduced with SEP (as well as the name of
the ETSI work group).
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13. Many service providers already have distributed data centers to support mobile (infrastructure) and/or video
caching (in either major metro centers or regional centers).

Service Locations and Chaining
The concept of service chaining shouldn’t assume the service elements are located in a
data center (or that all the service elements are virtualized), even though this may be a
long-term goal of service providers for their edge/access deployments.13

Services may be naturally associated with network boundaries, for example, by attaching
a security policy to a network boundary or by inserting a load balancer at a network
boundary. As shown in Figure 7-6, this network boundary may be:

• The boundary between a tenant network and an external network (the Internet or
the VPN to the enterprise network)

• The boundary between the network of one tenant and the network of another tenant
• The boundary between multiple networks of the same tenant

Figure 7-6. Services at network boundaries

Finally, services may be deployed in a more finely grained fashion and be attached to
individual flows or groups of flows (i.e., aggregate flows), as shown in Figure 7-7. This
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is the major model of interest for cloud service providers and in the Edge/Access net‐
work domain per-subscriber services.

Figure 7-7. Services for flows

Applying services to flows of traffic involves several steps:

1. Defining the elements and the ordering and configurations required to implement
a service. This definition includes the constraints on the placement of service ele‐
ments.

2. Identifying and steering the flow of traffic to visit the service node or the sequence
of service nodes.

3. Vendors have begun to label their current methodologies for doing service chaining.
In the case of Cisco Systems, this is called vPath, and in the case of Juniper Networks,
The Service Engineered Path (SEP).

4. Control plane signaling to the service nodes to inform them which services to apply
to which flows, including the service parameters.

5. As we will see later, there are also optimizations possible around original placement
of the service node and/or the ongoing placement of additional service instances
to alleviate performance bottlenecks.

All of these tasks are well suited for an SDN controller. SDN controllers have domain/
network-wide views of topology, hooks to orchestration systems (API), and the ability
to manage/provision a network overlay (or the abstraction that might be used to match
and direct traffic).

The use of an SDN controller may seem to be an obvious conclusion in the context of
service chaining in the data center, but less so in the Edge/Access domains (where the
added cost of a co-located controller may be prohibitive but the potential interaction
delay between agent/controller may be problematic). This brings us back to the idea of
an embedded controller, shown in Figure 7-8 (originally broached as an optimization
to the control feedback loop in research studies on involving the identification of “mice
and elephant” flows and forwarding table size management in OpenFlow controlled
networks). Here, the data plane element that terminates the circuit at the edge where it
has internal process acting as a slave subcontroller to a master controller, which would
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in turn interface with orchestration applications and simply provide state/rule and con‐
figuration updates.

Figure 7-8. For non-data center regions of the network, embedded SDN control process‐
es in network elements may be appropriate

In a mixed environment (i.e., virtualized and legacy service elements) or an entirely
legacy environment, the elements may not support some of the tunnel encapsulations
used in SDN overlays or a native agent that pairs well with the SDN controller. Thus, a
mixture of VLANs and tunnel encapsulations, as well as configuration/control protocols
between controller/controllers and network elements, may be required to create service
chains.

Metadata
Outstanding questions remain regarding the standardization of the overlay encapsula‐
tion and the traffic matching protocol(s) used in creating service chains/paths. These
questions are complicated by the consideration of whether some sort of metadata may
need to be implanted in the flow.

This latter consideration comes both from knowledge of how service applications cur‐
rently are designed in integrated systems that use metadata to pass clues from one pro‐
cessing block to another within the integrated system, as well as the potential (as envi‐
sioned in the ETSI NFV workgroups) of partial decomposition and virtualization of
service functions (shown later in this chapter in Figure 7-13).

The answer to the question of whether metadata is required may depend on the vision
of the role of the controller and its service chaining application, particularly whether
they will be charged with creating a chain that precludes any inter-block knowledge. It
may also depend on whether the virtualization vision limits function decomposition to
the same virtual device or composite and thus separates an internal chain that uses some
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14. http://www.trustedcomputinggroup.org/resources/tnc_ifmap_binding_for_soap_specification

IPC mechanism that allows internal embedded metadata from the external chain/over‐
lay.

The most common examples used as an example requirement for metadata involving
contexts that cannot be derived from the flow packet headers—e.g., subscriber-specific
ad insertion in the treatment of a video flow (where some further clue is embedded that
reflects geography, interests, or other triggers for the ad insertion).

Should there be a requirement for the passing of metadata between NFV functional
blocks, and if the metadata was flow-associated versus per-packet association, there
could be a role for a Metadata Access Point (MAP) in the overall architecture. Existing
specifications like IF-MAP14 may provide server/protocol solutions for creating and
distributing metadata but need to be integrated in the flow set-up or SDN control phases
of building service chains.

Metadata can be implicit (e.g., associated with an MPLS label) or explicit. The explicit
alternative, to embed the metadata, may result in extensions or overhead in packets to
pass metadata from one chain member to another that will almost certainly require
standardization to promote an open environment and may bring on collateral concerns
about transparency of such augmented flows to the existing network infrastructure.

An Application Level Approach
What if we’re solving the service chaining aspect of NFV at the wrong level? Should we
explore a solution using application-based protocols instead of network-based con‐
structs? The network construct view requires tunneling because data flows have intrinsic
routing that needs to be obscured (i.e., don’t forward on destination address). This view
assumes that network protocols can be manipulated to direct the flows as well as to
manage metadata, with the aid of a controller.

The application construct view (Figure 7-9) treats data flows as application inputs and
outputs. Applications run on servers (using discrete sockets), and those servers have
resolvable names (DNS). That service instance name to IP address binding identifies
the load balancer (or an anycast address for a bank of ADC/load balance capacity—the
assumption of a load balancer is quite common) for a set of components that run the
service and potentially multiple input and output ports representing different applica‐
tion personalities (i.e., configurations or behaviors). Bidirectional flows use two
personalities.
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15. This is not a detailed description of the internal mapping to external mapping.

Figure 7-9. The application-level proposal for service chaining leverages an optimized
stack to communicate with virtual appliances and allows a runtime environment for
some virtualized network services that use shared memory to communicate (an
optimization)

The service path specifies mapping from internal service ports to external transport
ports for each service and connectivity between the transport ports.15 These service
paths are generated from a data model that expresses the relationships between a service
component, services, and service paths, and propagated/applied from a management
system to the service instances (through a yet-to-be-determined API). More explicitly,
the model expresses relationships between service functions and internal port/socket
to external port mappings, more general attributes like scaling/constraints and load
balancing, and how the functions are interconnected to create a service.

While just in the idea/exploratory phase, this approach to chaining via a series of familiar
application-keyed technologies (e.g., DNS and ADC/LB) in conjunction with some new
application management technologies (e.g., controllers and their API) may be interest‐
ing if the number of chains (and thus tunnels) becomes overwhelming. As a benefit,
one of the different ideas explored here is the idea that functional elements on the same
device might use IPC mechanisms via shared memory to improve performance in cases
where a mixture of application interaction via external protocol and internal IPC form
the chain.
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Scale
Even if the current state of SDN makes the network construct palatable, given that it is
already an available entity with which we can experiment and build, considerations
around scale and complexity can’t be ignored. Scale and complexity also cannot drive
the application-level approach conversation.

Major components of the complexity discussion revolve around placement of the service
nodes and constraints that may restrict the service path (Figure 7-10):

• How many chains will there be, and what are the constraints on the path selection
of service chains (e.g., overall latency of the delivered service, administrative
boundaries, and tariffs)?

• How do those constraints affect the HA policy for a service (e.g., should individual
SETs be added to or from the chain if their placement causes trombone flows in the
network, or should the flow fail over to an entirely new chain)?

• How often will the chain topology change, and how dynamic/elastic is the loading
of the elements in the chain?

• Is there a benefit to service placement algorithms that minimize the potential for
network bottlenecks and contribution to overall delay in a serviced flow?

• What role does policy play in the service chain embedded within the chain as a
decision/branch point or when expressed as multiple different chain topologies?
When would packets be sent to a remote in-line service (i.e., not a proxy)?

Raw scale is also a factor in the complexity discussion:

• Number of subscribers/sessions
• Length/duration of sessions/flows and profile of packet lengths
• Packet throughput expectations, and both the capabilities of the overall chain and

each individual element (e.g., load balancer)
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16. According to their current online list, only Huawei Technologies (UK), Hewlett Packard, and NEC (Europe)
currently have “official” status in any subworkgroup.

Figure 7-10. How complex will service chaining be? Load balancing and HA introduce
a requirement for many tunnels to be set up between service nodes. Elasticity and dy‐
namic paths require potentially large-scale tunnel creation/deletion.

Given the potential scale implications and overall service constraints, placement of vir‐
tual service functions and the resulting service chains are likely to be highly localized.
The highest path diversity in the chain being potentially in the connectivity between an
edge/access domain device and a centralized COTS resource bank (a data center)—with
a failover to another such resource bank.

NFV at ETSI
NFV activity in ETSI hopes to address these and other questions about service virtual‐
ization. NFV in ETSI functions as an Industry Specification Group (ISG). The NFV
workgroups (Figure 7-11) will not define standards. Instead, their goals are to define
requirements, identify best practices, identify gaps in current standards, and make rec‐
ommendations on how to fill those gaps. NFV has a main organizational body, a tech‐
nical steering committee (TSC), and several subgroups with specific areas of focus.
Vendors are invited to contribute to the discussions, but large service providers domi‐
nate the list of NFV officials by organizational design.16 At the time this book was written,
not all the groups had produced position papers, though early documentation has de‐
fined their interfaces and roles.
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Figure 7-11. ETSI NFV work group organization/structure. Both MAN and INF have
interfaces with NFV SWA as well as with each other. Cross-functional workgroups
(PER, REL and SEC) don’t have defined interfaces with MANO, INF and SWA, but
work in conjunction with them. NFV SWA anticipates an interface to legacy OSS/BSS
systems (not shown).

Management and Orchestration (MANO) defines a framework that can be used for the
provisioning, configuration, and operation of virtualized network functions (VNF)—
essentially defining an orchestrator that controls all the VNFs. The MANO Orchestrator
has both an application (northbound) interface and element (southbound) interface.
While the southbound interface is defined in another group (infrastructure), the
northbound interface provides VNF lifecycle services (instantiation, operation, and
monitoring), policing (usage controls), infrastructure monitoring (which would be
somewhat of a pass-through function), and registration/topology.

MANO reinforces the concept that potentially new management tools may need to be
added to the traditional OAM&P model to handle virtualized network services (the
point was made earlier that the SDN controller may be uniquely positioned as a new
management entity). In the MANO case, this is proposed as the NFV Orchestrator
(NFVO), which will interface with legacy OSS/BSS.

It remains to be seen whether this implies that much of the management information
that might have been collected by the SDN controller/agent mechanism is either rep‐
resented by this application interface, other application interfaces, or some intrinsic
interface at the SDN controller level to the legacy OSS/BSS. In the example of DC Or‐
chestration, the MANO Orchestration platform can work in conjunction with a Cloud
Management System, which is shown logically below the MANO Orchestration in some
NFV documents.
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Part of the MANO work will be to define data models (Yang, TMN) for these various
tasks/interfaces and provide an open API. This work includes cloud and network models
(in cooperation with NFV INF) that may allow the creation of a macro management
application (a Manager of Managers?) for virtual infrastructure.

Somewhere in the orchestration function, there should be an ability to map functional
capacity to demand and to potentially provide a service topology that includes both an
API and visualization component. The SDN controller will need to manage the topology
and endpoint mappings.

Figure 7-12. Interaction of ETSI MANO, INF and SWA work groups (SWA view with
proposed inner functional groups)

Infrastructure—(NFV INF) defines common infrastructure for NFV. As shown in
Figure 7-12, the intent is to include both hardware and software. This group has been
very active in authoring documents and has already cataloged approximately 14 inter-
domain interfaces in the NFV architecture. They are responsible for recommending the
hypervisor-level architectures that streamline I/O and minimize context switching as
well as the data model mentioned in the MANO section.

There has been a good discussion about which of the I/O optimization strategies com‐
mon in the domain are best suited for NFV (e.g., DPDK versus SR-IOV) performance.
This topic has a dependency on the proposed Reliability and Availability architecture,
as the latter might include the concept of VM-motion, which may preclude an
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17. While nothing has been decided at this point in time, this example is used more to point out the potential
dependencies between NFV subgroups. There may be additional dependencies on outcomes from NFV PER
testing.

optimization strategy of SR-IOV. In discussion, the case has been made that SR-IOV is
less friendly to VM-motion.17

Software Architecture—(NFV SWA) defines use cases and how solutions should be
structured and possibly decomposed into functional blocks.

One of the interesting questions for NFV in general is what services can be virtualized
and in what method. There is a spectrum of potential solutions, from the fully virtualized
service running as a single VM through a multipart (a service comprised of functional
sub-blocks), fully virtualized service to the service that must run on bare metal. Note
that the latter could still benefit from orchestration from an operations perspective.

NFV SWA believes that the virtualized functions should be able to interact either directly
with INF or indirectly through MANO to express operational requirements (e.g., com‐
pute, storage, security, QOS, memory resources, and support requirements (e.g., mon‐
itoring, metering, and billing).

• Their proposed Control Signal Processing Function Group will focus on authen‐
tication/authorization, policy, state management, mobility, and mobility-related
support functions, including call record collection and lawful intercept.

• Their proposed User Data Processing FG will focus on packet forwarding, dupli‐
cation, counting, processing, load balancing, and application layer steering (i.e.,
proxy).

• Their proposed Data and Storage FG will focus on data storage and management.

In SWA, NFV builds on the SEP concept of a SET (in NFV, now called a VNF), in that
a SET or service function can be decomposed into component parts or functional blocks
(assuming the set may be comprised of more than one functional block—e.g., signal
processing, transaction management, and content processing).

If decomposed into more than one functional block, those blocks can then run in many
possible arrangements. Thus, description is also required of the relationships and com‐
munication between the parts, operational behavior, and constraints (e.g., topology).

These function descriptors are similar to the policies attached to SDN applications,
which will be expressed-to/imposed-on SDN controllers. Such policies specify each
application’s routing, security, performance, QoS, geofencing, access control, consis‐
tency, availability/disaster-recovery, and other operational expectations/parameters.

One very important task for the SWA is to define the descriptors in a way that allows
flow-through provisioning. That is, while the orchestration system and SDN controller
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can collaborate on placement, pathing and instantiation of the network functions, their
individual and composite configurations can be quite complex—and are currently
vendor-specific.

The Open Virtual Format (OVF) (currently the de facto standard for the packaging of
virtual machines) is capable of expressing some configuration metadata today but is
incapable of the potential configuration complexity of some of the envisioned services
and thus needs to be extended or augmented.

The goal would be for the operator to not have to exit to separate configuration entities
post-instantiation, avoiding retouching the collection of machines that comprise the
individual or composite service.

One of the examples used is Evolved Packet Core (EPC) application (generically), which
can be broken down into the following functions: policy/rule-set processing, user/
session state management, layer 3 packet processing, layer 7 traffic steering function,
and so on. This functional decomposition is illustrated in Figure 7-13.

Figure 7-13. Functional decomposition. If a service (e.g., EPC) is virtualized, will all its
subcomponents run in the same VM, in separate VMs on the same host, as separate
VMs on different hosts in the same logical domain (e.g., data center), or as separate
VMs on different hosts in multiple logical domains (e.g., data center and aggregation)?

Security (NFV SEC)
Defining how to secure both infrastructure and the virtualized service functions
(including the API). This would also include authentication, identity management,
monitoring, detection, and mitigation of threats.

Performance and Scale (NFC PER)
This is self-evident. The group will try and define practices that provide optimal
performance, describe performance/scale/portability tradeoffs, and present
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performance test data (several carriers have proposed tests including the impact on
performance of the use of various vendor’s NICs and different types of I/O mech‐
anisms).

Reliability and Availability (NFV REL)
Defines deployment and management practices that assure reliability and availa‐
bility. At this point, they’ve defined some useful terminology for the expression of
application requirements and constraints: delay/traffic/disruption/fault tolerances,
performance (e.g., QOS requirements), security (non-repudiation, confidentiality,
authorization, etc.), and dependability/reliability.

This group has also touched on some interesting questions about in-chain failure (one
element or function fails in the chain) and potential application involvement, the elim‐
ination of single points of failure (e.g., hypervisor), the need for heartbeat mechanisms
between subcomponents, and the emulation of (hardware/software) watchdogs that
might have been present in non-virtualized solutions.

NFV REL also will address some of the potential problems in a virtualized environment
that need to be addressed for a carrier-grade deployment (“Virtualization and Data
Plane I/O” on page 208).

Use cases documents seem to be coming from several groups besides the SWA. There
is a Network Operations Council (NOC) that defines use cases, and the INF group has
provided illustrative use cases as well. These are only limited by imagination and include
specifics (e.g., WAN Optimization, Firewall, Router, IPTV Head-end, DPI, Residential
Gateway/CPE, Mobile Base Station, and Mobile Packet Core) as well as more generic
service descriptions (e.g., partial decomposition of a function, using purpose-built
hardware, nd sharing compute between VNFs).

Non-ETSI NFV Work
The existence of the ETSI workgroup shouldn’t imply that this is the only place service
virtualization study and standards are being conducted or that production service vir‐
tualization offerings are not already coming to market. This is far from the case; for
example:

• The academic community is beginning to study some of the questions around NFV
as part of the burgeoning SDN research they are performing.

• Many existing controller/framework vendors are targeting service chaining as one
of their applications and a few startups (e.g., LineRate, Embrane) are positioning
controllers for layer 2 through layer 7 that work with their own virtualized services.

• Existing vendors of highly integrated network elements are investigating inter‐
mediate or total virtualization of their platform/solutions.
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18. The BOF (proposed for IETF 87) proposal and related papers are currently located online (though the docu‐
ments may move to an archival status post-BOF).

19. These are publicly available and presented studies and not meant to be a complete listing of research on the
topic.

20. http://minds.wisconsin.edu/bitstream/handle/1793/61606/stratos_tech_report.pdf?sequence=3

21. http://www.opennetsummit.org/pdf/2013/research_track/poster_papers/final/ons2013-final28.pdf

• Though it is too early for a complete section in this revision, the IETF has begun
soliciting interest in the area of service chaining. A proposed work group (Network
Service Chaining [NSC]) is currently collecting drafts in its BoF (birds of a feather)
stage18. This includes drafts proposing formalized packet headers for expressing
service context and metadata as well as the need for a standardized generic service
control plane.

Middlebox Studies
In the academic community, recent studies have focused on optimization of Middlebox
appliances,19 which are essentially the virtual service appliances (or a subset) targeted
by NFV studies. In particular, the studies focus on the ability to integrate, manage, and
scale a complete Middlebox deployment, with the recognition that these could be more
than one device—a service chain.

The University of Wisconsin has a progression of studies (Stratos,20 which appears to
progress as CloudMB21) that propose optimizing performance of such chains by mon‐
itoring serviced streams based on an application-reported performance metric and
(using a greedy heuristic) spinning up or down instances of specific middleboxes to
alleviate bottlenecks (triggered by significant change in performance over some time
threshold) while maintaining a pre-determined level of application performance.

The study is also concerned with optimizations of the initial middlebox placement, the
heuristic (scale) and in-flow assignment to the middleboxes such that inter-rack traffic
was avoided (network-aware placement and flow distribution) as an additional bottle‐
neck source.

There was also emphasis on not moving existing flows (no service interruption or make-
before-break behavior) in the scale up/down phases (the scale down phase is an inter‐
esting inclusion because there could be cost savings during idle network periods).

There are interesting concepts in the research around the heuristic and some of the
simplifying operations assumptions/assertions (in respect to service chaining):
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22. This is not a unique perspective for overlay networks in particular (e.g., Resilient Overlay Networks).

23. http://www.opennetsummit.org/pdf/2013/research_track/poster_papers/final/ons2013-final51.pdf

• The operator would prefer not to manually intervene at all (fully automated solu‐
tion) and that the nature or function of the middlebox was somewhat irrelevant to
the process (or could be made so by the process).

• The preferred solution to congestion in the service chain can be solved in place
(relatively), without diverting or “trombone(ing)” traffic to an instance or chain
segment in another location (i.e., minimizing branching).

• The assertion that monitoring can’t be derived from traditional traffic counters in
the infrastructure because of the nature of operation of some of the devices. Nor
can the simple monitoring of resource consumption in the VMs be assumed to
reflect end-to-end application performance. Thus, application involvement in
monitoring is preferred.22

• The iterative heuristic was chosen over other strategies: scaling all middleboxes in
the path, reliance on function-specific monitoring, reliance on packet processing
time estimates, and monitoring CPU load on the service elements.

The solution uses a high-level topology abstraction for the definition of service chains,
and a central controller to program forwarding (e.g., using an OpenFlow controller).
The controller was augmented with a topology file that is populated with middlebox
and application instances from which it can generate service-chain forwarding rules for
the switching infrastructure (according to the abstracted topology chains). In a more
generic sense, this augmentation alters the traditional (simple) topology and path com‐
putation of the controller to be service aware.

The system/process works in conjunction with a VM orchestration system to initially
place the service VMs and to add/subtract instances as the heuristic spins up/down
scale.

Slick23 takes a different tack. While the semantics of SDN protocols have promised the
ability to transmogrify a (v)switch into a network service appliance, limitations in both
the protocol and existing implementations have prevented realization of that possibility.
Slick navigates two broad areas: working around the limitations of the existing static
semantics of flow matching in SDN and (maybe inadvertently) dynamic service chain‐
ing.

In this project, the specialized controller speaks to an agent (a Slick controller and agent)
on a programmable device (e.g., a server, potentially with a programmable network
element—FPGA, NPU, GPU) to dynamically load application functions and provide
returning triggers to the controller from those functions.
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Applications interface with the controller to install functions in the network along with
a matching set of flow specifications. The controller has responsibility for placement of
the functions (a commonality with CloudMB) and to establish paths for the flows to
the function.

Figure 7-14. An iterative middlebox optimization technique; when web clients report
out of specification response times, the orchestrator (in conjunction with the SDN con‐
troller) iteratively tries to add (localized) capacity to the different middleboxes in the
service path to remove the bottleneck

The concept seems to break the vertical integration of middleboxes by removing the a
priori assignment of functionality (e.g., the device is no longer a firewall per se, but
could perform some of the functions of a firewall). So, Slick not only broaches service
chaining in general but also the definition of a virtualized service.

Embrane/LineRate
While Embrane was not included in the book’s controller survey chapter, it could be
considered a very specialized SDN controller appropriate to the discussion of NFV.
Embrane markets Heleos, a platform that enables the provisioning of virtual network
services. Since it doesn’t depend on any standardized SDN protocols and integrates the
service management application directly into their application, the terms controller,
orchestration and management system get a little blurry. (This is becoming a recurring
theme in SDN in general!) Like some other SDN controller/agent architectures, Em‐
brane’s control processes (ESM—the Elastic Services Manager) only work with their
devices (DVA—Distributed Virtual Appliances). A DVA is essentially a virtual service
element for COTS compute. Embrane currently offers load balancing and firewall
services.
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24. http://www.f5.com/about/news/press/2013/20130211/

One of the big questions with a solution like Embrane, and in fairness, with all SDN-
like solutions coming to market, is whether it will develop an open ecosystem for the
development and management of third-party applications or continue down a propri‐
etary path. Should it choose the latter, whether customers will adopt the solution in
numbers large enough to forge some sort of de facto standard is ultimately a fair question
to ask of this solution.

LineRate Systems was acquired by F5 Networks.24 LineRate spun up out of work at the
University of Colorado and had one (public) product at the time, a virtual Load Balancer
(LineRate Proxy). The virtual service was a full application layer proxy driven by ex‐
ternal policy with traffic steering capabilities. This is very much a product relevant to
the discussion of virtualized services/NFV. LineRate differs from Embrane in that it
doesn’t appear to have a separate controller/agent architecture or controller offering.
Instead, it provides an external policy server. LineRate did have an interesting perspec‐
tive on the definition of SDN and the decomposition of network functions:

• LineRate has what appears to be a DPI-like approach to SDN but claims to be
different because it doesn’t steer traffic based on packet-based matching/forwarding
behaviors. Instead, it uses its ability to cache and replay application-level requests
in combination with policies applied to the responses to do the steering. This allows
the solution to potentially re-issue the request to a different source or an interme‐
diary service, e.g., video optimization.

• LineRate points out in its marketing literature that perhaps as integrated network
services (e.g., EPC) decompose, the LineRate solution is positioned to be even more
effective as a control point.

NFV work in ETSI has contributions that also suggest that some mixture of low-touch
control such as flow matching like that found in OpenFlow, and high-touch control
such as full proxies, may be needed at different places in the flow. The low-touch control
would be useful in flow setup and in doing some location steering, and the high-touch
control would be used to split or aggregate traffic.

Embrane and Linerate both have advertised flexible licensing models including keyless,
usage-based, and subscription options (each company uses different terminology for
these models, but the ideas are the same). Since pricing/licensing can be fairly fluid, it
can quickly become historic. But licensing is yet another important consideration in the
discussion of NFV or service virtualization. For example, a usage-based pricing model
would be more desirable with optimizations and automation like those presented by
Stratos/CloudMB (or feedback loops like those shown in later use case chapters that
optimize the traffic sent to service nodes).
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25. See http://www.virtualization.net/5653-carrier-sdn-solutions-virtualized-epc/ or http://www.huawei.com/en/
about-huawei/newsroom/press-release/hw-196147-sdn.htm (Huawei has also submitted vBNG as an NFV use
case.)

26. http://www.ipinfusion.com

Platform Virtualization
Current service provider networks have evolved into a collection of purpose-designed,
integrated elements or platforms. For example, the fundamental design of a core routing
platform is to forward packets at an extremely high speed and low latency with pack‐
aging sensitive to physical footprint, power consumption, and associated heat. The
placement of this platform at the network/provider edge, where a tradeoff may be re‐
quired between forwarding rate, session state management, protocol session scale, and
other services—may be difficult without an entirely different set of forwarding blades
and service blades.

Over time, some vendors became specialists in packaging certain types of platforms.
The most common examples are the Broadband Network Gateway and Evolved Packet
Core components.25

As SDN began to be explored by network operators, competitors to the entrenched “big
three or four” vendors of these platforms began to explore new packaging models that
reduced cost and leveraged some of the principles of service virtualization.

The general designs put forward were to use an SDN Controller (e.g., an OpenFlow
controller) to program forwarding state into a (much simpler and lower cost) switching
element and create application specific state (protocol or user session state) on an as‐
sociated server-based application. There are also the (previously mentioned) projects
to replace or centralize the functions of the current generation of routers with cheaper
components like RouteFlow (BGP and IGP on OpenFlow) or Flexinet (BGP on Open‐
Flow) and more recent work with IP Infusion26 (ZebOS BGPD).

Traditional vendors are responding by virtualizing low-hanging fruit in traditional net‐
work operations like the BGP Route Reflector (vRR); Figure 7-15. These devices are
purposely not in the data plane by design and thus are the most easily converted to
running in a VM.

If the vRR has a standardized programming interface and standardized controller/agent
control session, it becomes a potential SDN control centralization point. Then, existing
Provider Edge deployments start to look like SDN deployments (even if they continue
to leverage the existing distributed control plane for the most part), providing a bridge
between present operations and a more virtualized future operation.
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Figure 7-15. Conceptual virtual Route Reflector (vRR) as programmable control point
for service provider network (e.g., injecting routes into aggregation network)

This model was explored in the Juniper Networks/Contrail and ALU/Nuage SDN con‐
trollers and is appearing in the presentations of other, traditional network element ven‐
dors. This is particularly easy to visualize in a data center context, where a virtual Pro‐
vider Edge (vPE) manifests as a vRR and companion host-based agent (which programs
a hypervisor-based routing entity for the data/forwarding plane) as a control plane and
the tenant VMs appear as virtual Customer Edge (vCE) entities. However, the vCE could
also be established as part of managed service offering for the Enterprise VPN market
to centralize/optimize the processing for WaaS, IPSec, and other services (ostensibly by
using tunneling of the flows). See Figure 7-16 for a conceptual drawing of a vCE
proposal.
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Figure 7-16. Fang/Bitar vCE proposal from MPLS & Ethernet World Congress 2013

There are also tactics that allow traditional network element vendors to incrementally
separate their services portfolio from their hardware. For example, some vendors have
programs that allow their services to run first on tethered servers (using extensions to
their SDK/APIs that are used to chain services in the integrated platform) before ulti‐
mately virtualizing the service. This allows some interim scaling of the service on com‐
mon compute while the chaining orchestration and protocols flesh out (Figure 7-17).
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Figure 7-17. Transitional/integrated service virtualization strategies

Services can run on internal NPU or CPU blades, tethered COTS using API extensions
that allow internal management and forwarding/chaining techniques to be used on the
tethered compute and ultimately an independent entity controlled externally. This level
of virtualization and chaining, though proprietary, does allow some scale out on COTS
compute and can be combined with application-level load balancing and localized static
routing to create new services (e.g., the mobile space’s Service Delivery Gateway). In
this model, however, the manager of the virtualized service could be the router/switch
(particularly in the tethered-appliance model). Lacking any immediate standardization
in service chaining protocols and encapsulation, the early market service chains could
be created with GRE encapsulation and route-leaking techniques (Figure 7-18).
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Figure 7-18. Service chaining using routing instances

Many public service providers (broadband aggregators) are also looking to move to a
virtualized CPE device (vCPE). These explorations have folded back into ideas the tra‐
ditional PE (Provider Edge) device for broadband aggregation (BNG/BRAS) might also
be effective as a virtual entity (vPE). The motivation for vCPE for carriers was to enable
the creation of new services, reduce costs, and reduce customer care calls by moving
the functions of (an arguably exhausted) layer 3 CPE to a combination of layer 2 CPE
and COTS hardware running layer 3 CPE basic services (e.g., NAT, DHCP, DNS) and
possibly more advanced/future services (e.g., security, HTTP Proxy, etc.); see
Figure 7-19.

Figure 7-19. Network Function Virtualization applied to layer 3 CPE in service provid‐
er networks (proof of concept)
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This work ultimately leads to investigations of whether the BNG functionality can be
integrated with the vCPE functionality (Figure 7-20).

Figure 7-20. A broadband aggregation platform constructed by integrating and virtual‐
izing the functions of both the BNG and the CPE

Work in this area (beyond proof of concept) includes studying performance implica‐
tions of the placement of the virtualized functions (e.g., south or north of the BNG, co-
located with the AN, etc.) and how the integrated functionality can be dissembled to
create a horizontally scalable solution. This includes container strategies and I/O opti‐
mization strategies that are also being studied/discussed in ETSI NFV forums.

The currently integrated solutions (for the vCPE/vBNG example) have very low price
points per subscriber that the new virtualized services will have to meet. Should these
new virtual platform designs be technically feasible, it may only be at some point in the
future that the cost per subscriber fits the business case (when the COTS price/perfor‐
mance curve crosses the appropriate thresholds).

Conclusions
Network Function Virtualization is a somewhat older idea that when first brought up
was not really capable of being realized, but now with the advent of SDN, orchestration
techniques and virtualization advances, is now being realized. Just as it does for the
control plane, SDN concepts and constructs allow service providers and users to rethink
the assumptions built into the current method of providing a service plane or delivering
services using new virtualized and chainable service platform constructs. Virtualization
alone does not solve all service deployment problems and actually introduces new re‐
liability problem vectors that a service orchestration system or architecture has to
mitigate.
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27. Academic research in general has been a great enabler of SDN and its applications—this is just a specific
example.

While virtualization is the focus of this chapter and the NFV effort,
the reality is that the orchestration and chaining involved need to have
a scope that includes present and future fully integrated service plat‐
forms (at least up to the point where the I/O characteristics of fully
virtualized solutions eclipse them and some “tail” period in which they
would amortize).
It is unclear whether the data plane-processing overhead that exists
today in the virtualization environment will make a great degree of
multitenancy in virtual service hosts practical. One practical out‐
come of NFV will be the integration of orchestration and SDN for
traffic steering and scale up/down on demand.

A great deal of research has begun into decomposing existing services into their func‐
tional elements and opinions vary on the granularity of this decomposition. Decom‐
position will ultimately influence service chaining resiliency and availability require‐
ments for both the overall service as well as its individual elements. It further impacts
scale and complexity of operation. The overall number of functional elements, service
chains, and the constraints on how those chains are constructed and operate need to be
defined and may only be known through trial deployments and experimentation. How‐
ever, these chains will have to incorporate both virtual and non-virtual service elements.

While service chaining is conflated with NFV, it remains to be seen if
service providers will deploy service chains with a wide degree of var‐
iance in the physical location of elements or continue to build very
linear/pipeline structures similar to those we see today without chain‐
ing,. The improvements of NFV leveraged being primarily in the scale
up and down (in-situ) of services.

Even though the role of SDN in the control of service virtualization appears to be uni‐
versally accepted, the type of control point is still debated. This is particularly true in
the difference in approach between stateless and proxy control points.

Research like that in the University of Wisconsin27, further underscores the role of top‐
ology in SDN (i.e., moving beyond a simple, single-layer representation) and in the
types of abstractions we provide to or via applications (in this case the language to define
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28. There are currently drafts for creating an OAM-like functionality in VxLAN overlays, but generalized trou‐
bleshooting tools equivalent to OAM, ipsla, ping, traceroute (as they apply to the distributed control of the
underlay) still need to mainstream in the multitude of overlay environments.

29. Though, to their credit, both the ETSI NFV forums and the ONF have started security subgroups (the former
targets publication of a best practice recommendation in 2013).

service chains). This research also brings forward the (often forgotten) topic of trou‐
bleshooting in a new operational paradigm.28

Like troubleshooting, security currently lags in the top-of-mind conversation about
service virtualization (as it does throughout the SDN conversation).29 This may be one
of the areas that the potential user community can bring the most insight/contribution/
enthusiasm (particularly those of you working in the deeper/darker halls of government
and black-hat security expertise). Meanwhile, a market for virtualized services is already
developing. Specialized SDN solution vendors like Embrane are providing turn-key
solutions (that reinvent the load balancing and firewall service concept), and the more
generalized controller/framework vendors now speak openly about service chaining
being a target application for their platforms (some data center orchestration systems
already include appliance recognition and placement in a domain-specific context).

Orchestration may allocate the service containers while SDN provides the connectivity
in these NFV architectures or models, including some potential abstractions that hide
some of the complexity that comes with elasticity. Both will have to work cooperatively
to provide high availability and a single management/operations view. All the while,
behind the scenes, traditional OSS/BSS is not really designed to manage the highly
decomposed services of NFV, and the NFV Orchestration/SDN pairings will have to
provide a transition. These systems will need to evolve and be adapted to the new future
reality of virtualized network services that NFV promises.

In closing, it is clear that traditional vendors are pursuing low-hanging fruit transfor‐
mations of their integrated service platforms via virtualization with an eye on when the
price/performance characteristics of doing so may be feasible for more complex inte‐
grations at the Provider Edge (vCPE/vBNG/vPE). These will certainly include early
offerings of virtualized firewall, DPI, and load balancing functions (since these are fun‐
damental to almost every chain in production). Ultimately, Intrusion Detection Systems
(IDS), Intrusion Prevention Systems (IPS), SSL off-loaders, caches, and WAN optimiz‐
ers will be targeted (particularly for the Enterprise networking/tenant space). The burn‐
ing question is whether or not these transformations will be soon enough to allow tra‐
ditional hardware device vendors to keep pace with these trends, or if newer non-
incumbents will be able to take a foothold.
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CHAPTER 8

Network Topology and Topological
Information Abstraction

Introduction
Topological information and its availability to applications that wish to utilize what
amounts to rare gold in the networking world has long been available to a select few
applications. These applications had to satisfy a few important criteria. First, they needed
to be fluent in one of many routing protocols. And secondly, they had to be allowed to
join in routing in the literal sense: they had to directly attach to a routing network—
this took more than just racking up a server and plugging it into a network.

It often required the application to go through the same security and other quality
assurance hurdles that any other piece of networking gear in that network had to. This
often took literally years of testing to complete. And when that moment arrived when
the application was allowed on the network, its grasp of network topology was then still
limited to that of active topology—that which was used to actually route or steer traffic
at that instant in time.

Inactive or dormant topological information is generally not required for routing cal‐
culations and thus is not carried in any routing protocol exchanges. This information
is needed by some applications, as explained later in this chapter, and so in order to gain
that information an application still had to manually locate it using out-of-band means
such as the command-line interface or other management protocols.

One final downside to traditional approaches to topology was the format of the topology
information itself. The information was, as one would expect, formatted such that a
router could quickly gather and process the topology for the fastest routing computa‐
tions, or if gathered using out-of-band methods, in yet another format suitable for a
command-line interface, for example, but not for doing other calculations. Unfortu‐
nately, these formats were often suboptimal for other uses that these applications had,
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and thus required their further processing to make it useful—requiring further effort,
expense, and kludges in order to make it work. Fortunately, recent and new approaches
in the area of topological information, its discovery, retrieval, and processing, have been
undertaken. It is in fact this new effort and approach to topology, how it is being made
available to applications through the SDN controllers and frameworks, and what then
can be done that we discuss in this book, and in detail throughout this chapter.

Network Topology
Before delving into the details of what it means to gather, construct, and maintain a
modern network topology, especially for the purposes of SDN approaches, let’s first step
back and briefly give an introduction to network topology.

Network topology is the interconnection of, and relationship between, various elements
of networks. Network topology boils down to two basic elements: nodes and links.
Nodes represent any number of possible network devices, such as routers, switches,
servers, phones, cameras, or laptops. Nodes can be terminal or connecting. In the case
of terminal nodes, these exist at the ends of the graph and do not generally interconnect
with other nodes in order to forward traffic between other nodes (e.g., laptops or
iPhones). Connecting nodes do what the name implies: they connect other nodes to‐
gether, such as routers or switches.

The topological structure of a network consists of nodes and links that are connected
in one of two ways: physically or logically. Physical refers to just that—real network
interfaces such as a physical cable (i.e., Ethernet) or fiber that is run between nodes.
Logical, on the other hand, is a set of constructs that contains things such as virtual
interfaces or network paths that are built on top of a physical infrastructure. For example,
a layer 3 IP interface is merely a logical construct and encapsulation over a physical
interface, such as a twisted pair category-5 Ethernet. Of course, distances between nodes,
physical interconnections, or transmission rates of interfaces all may differ between two
nodes regardless of whether or not the links are logical or physical.

An example of a topology that contains both logical and physical links and nodes is a
simple Ethernet-based local area network (LAN) comprised of six nodes with physical
or logical links between the nodes. In this case, each node would have at least a physical
interface between each node, but then possibly a logical layer 3 IP interface stacked on
top of that interface.

If one wished to display such a topology visually, it would look like one of a number of
common geometric shapes such as those shown in Figure 8-1. One could then map the
data flows between the physical or logical entities over this topology as a second layer
of topological visualization over the (same) physical underlying topology.

In this way, you can see how topologies not only help keep track of actual entities such
as nodes or links, but also how those things are used or which states they are in. For
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example, one can imagine having a means of coloring the various elements in Figure 8-1
with red or green lights to indicate the operational state of those interfaces.

For completeness, there are seven basic topologies that are consid‐
ered and shown in Figure 8-1:

• Ring or circular
• Mesh
• Star
• Fully connected
• A line or daisy chain
• Tree (acyclic or multidirectional)
• Bus

Figure 8-1. Classical network topologies

Of course, hybrids of the seven topologies can be constructed, and in fact, are very
common in the real world.

Once a topology has been gathered and is considered stable, different representational
modeling efforts can be undertaken in order to best represent the topology for con‐
sumption either internally by a management system, or for presentation to an external
consumer of the information.

In most cases, topological layering is employed in order to join together and associate
the various physical and conceptual layers of the topology. This concept is not one that
was recently invented; rather, it has existed since the beginning of networks, although
it has evolved over time to include more and more information. It should be noted that
when considering multilayered topologies that layers 0 through 7 are considered here.
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This therefore includes both physical optical topologies as well as virtual networks lay‐
ered over this physical infrastructure, such as layer 3 MPLS VPNs.

Not only do typical topology diagrams now include the physical and virtual network
components, but also they now include applications that consume, utilize, or otherwise
occupy those links and nodes. It is important to represent these in the topology diagram
as well, as in Figure 8-2, where not only is the logical layer 3 network represented, but
two additional layers.

Representing these higher conceptual layers helps network planners and designers bet‐
ter monitor and adjust the network to changes both observed and foreseen in the future
(i.e., predicted). This is particularly important in light of the discussion of NFV in
Chapter 7.

Figure 8-2. Conceptual diagram showing how a management station could represent a
multilayered topology

Traditional Methods
Let’s take a quick look at what maintaining, gathering, and discovering topology has
meant in a real network prior to the advent of SDN.

Traditional approaches to topology include a few basic operations. These include initial
discovery of a network’s topology, keeping up with ongoing changes to the topology
(i.e., rediscovery), and then the management and exposure of the topology once it has
been gathered and deemed stable.

When gathering and interacting with the network topology, two largely different cate‐
gories of approaches exist: a hodgepodge of screen scraping via a CLI; access to SNMP
MIBs, or NETCONF; or joining routing.
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In the first case, an application would generally rely on a network management station
to gather their various topological information, and then consolidate, filter and abstract
that information into a proprietary format that it would then expose for applications or
other managed services to use. Once gathered, an application could search through the
often-vast array of information finding the pieces and parts it needed, and then be on
its way. In other cases, the management station would need to notify interested appli‐
cations of changes to the existing topology. For instance, if a new node was discovered,
it was important to notify applications in a timely fashion of the change.

When communicating with devices, a variety of approaches were used. These included
CLI access, SNMP, NETCONF, or even ARP probing or IP ICMP ping discovery. This
patchwork of approaches would return various information, including layer 2 or 3
reachability, attached neighbors, logical tunnels/paths, as well as basic status of each of
these elements. Once gathered, this information is processed into a format that can then
be dissected and abstracted, and ultimately made available for other applications to
operate on and use.

Many successful companies were formed based on applications that performed the just
described operations. Some, such as the original Cabletron Spectrum (now CA Infra‐
structure Manager) took topology discovery to new levels of sophistication. Not only
did these applications discover active layer 3 topology, but they could also locate non-
routed (i.e., layer 2) topology of devices such as HUBs and switches. Finally, they could
also locate devices, links, or paths that were dormant, in a failed state, or simply not yet
advertised in routing protocols. A screenshot of the CA Spectrum/IM product is shown
in Figure 8-3. The figure shows how both physical and logical can be overlaid on a
display in order to construct a more complete picture of the network for an operator.

Other companies have taken the approach of joining routing as a means of gathering
most of their topological information, but as with the earlier approaches, they need to
augment this information gathered from other management interfaces such as the CLI.
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Figure 8-3. CA Spectrum/IM Topology

One such example of a product in this space is Packet Design’s Route Explorer product.
At its root, Route Explorer joins routing as a BGP, OSPF, or ISIS speaker and simply
listens to routing exchanges. In doing so, it learns the network-wide topologies that are
being advertised by routers within the network. Figure 8-4 illustrates how this works.
The server where Route Explorer executes must have at least one interface (i.e., Ethernet
port) from where it learns both IGP and BGP adjacencies.
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Figure 8-4. Packet Design’s Route Explorer product joins active routing and masquer‐
ades as if it were a real router in order to listen to routing protocol updates in order to
gather network topological information

Regardless of how the topology is gathered, once it is collected, it is the job of the
topology management system to normalize the topology into a format that can be con‐
sumed by the rest of the system.

In the old days, the rest of the system consisted of other parts of the management
application or operational support system (OSS). Since the vendor tightly coupled these
elements, the format of the topology could be proprietary, or at least defined by the
vendor and exposed as was necessary so that external applications might interact with
it.

However, today’s SDN controller architecture has a standardized northbound API as
one of its key facets. Having this API alone is important, as it allows applications to be
coded to interact with that controller; however, this is just the beginning. As we men‐
tioned in Chapter 5, having this API defined as an industry standard allows and en‐
courages application portability.

In the ever-growing world of SDN controllers, having a common API to program SDN
applications to is not just theoretically important, but economically and operationally
as well. It means a network operator can either buy or build a single application to
accomplish a particular task, and then have it interact with all of the controllers deployed
in his/her network.
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One very interesting thing that can be done with network topology is called Network
Change Modeling, or more colloquially, “what if?” scenario planning. This is one feature
that can be used once a network topology has been gathered and deemed a stable top‐
ology.

Once a network topology is in hand, and one understands how that topology has been
constructed (i.e., routing topology algorithms, constraints, network policies, link band‐
width utilization, interface status, etc.) one can view the topology as a very accurate
model of the operational network. Not only this, but one now knows how that state was
arrived at.

At this point, one can imagine making changes to see how they affect that model. For
example, it is interesting for network operators to observe how changes to link metrics,
bandwidth utilization, link addition or removal, back-up path addition, or any number
of failure scenarios such as a link, node, or entire network failure can affect traffic pat‐
terns and behaviors.

Further, once a layered topology is achieved, as we showed, running applications, or the
servers that host those applications and services, can be observed as well. Operations
such as capacity future planning can also be imagined as a possibility.

One key SDN application that applies at this point is network function virtualization
and service chaining of those virtualized functions to other real or virtual ones. One
key to the success of these approaches is in fact the topological view of the services and
how they are connected or chained (as already discussed in great detail in Chapter 7).

LLDP
Some of the early SDN controller and OpenFlow-enabled switch approaches described
in Chapter 4 originally lacked a key component in their architectures: they needed to
discover the network topology of the OpenFlow-controlled switches the controllers
were in charge of.

This information was needed for the controller to plan, provision, and monitor the
network paths between the switches, but it was unavailable because the switches did not
have any paths set up until they were set up, and generally speaking, were waiting to be
programmed by the controller in their initial state.

This represented a chicken-and-egg dilemma. To solve this, the LLDP protocol was
enabled on the switch ports by default, but instead of only communicating directly with
the remote switches with the discovery frames, the information was relayed to the SDN
controller that would then collect this information into a centralized view of the network
topology, and then forward it back to the neighbor switches. This worked well within
the OpenFlow deployment architecture at the time.
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1. IEEE 802.1AB-2005

2. LLDP supports vendor extension/customization through TLV type 127.

The Link Layer Discovery Protocol (LLDP) is an industry-standard protocol that allows
networked devices to discover and advertise capabilities and identity information onto
a layer 2 LAN.

The layer 2 protocol that was standardized by the IEEE1 replaces several proprietary
protocols implemented by individual vendors for their equipment including the Cisco
Discovery Protocol (CDP).

LLDP allows network devices that operate at the lower layers of a protocol stack (e.g.,
layer 2 bridges and switches) to learn some of the capabilities and characteristics of LAN
devices available to higher layer protocols (e.g., IP addresses).

The information gathered through the LLDP operation is stored in a network device
and can be queried using the SNMP protocol, the CLI, or NETCONF. A device’s neigh‐
bor topology and associated information can also be gathered from this database.

Some of the information that can be gathered by LLDP includes the following:

• System name and description
• Port name and description
• VLAN name and identifier
• IP network management address
• Capabilities of the device (e.g., switch, router, or server)
• MAC address and physical layer information
• Power information

A device that is configured for LLDP operation sends PDUs on each of their interfaces
where the protocol is enabled. The PDUs are sent at a fixed interval and are sent in the
form of an Ethernet Frame or PDU. Each LLD PDU contains a sequence of type-length-
value (TLV) structures that encode one of the aforementioned attributes.2 These frames
are sent to a special multicast address that is not forwarded. In this way, broadcast storms
are prevented in cases of forwarding loops.

Figure 8-5 illustrates a basic network comprised of two switches, three phones, a PBX,
and a PC. The LLDP neighbor discovery information is displayed as each switch receives
it. Note the types and addresses that are shown for each neighbor in each switch’s
neighbor discovery table.
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Figure 8-5. LLDP Sample operation in a simple network containing two switches, three
phones, a PBX, and a PC; the LLDP neighbor discovery information is displayed as
each switch receives it

In an SDN context, LLDP can be leveraged as a switch discovery protocol. The infor‐
mation that is then gathered can be used to construct the network topology.

In the example shown in Figure 8-6, a very rudimentary network of two switches is
shown that are under the control of the SDN controller at the top of the figure.

OpenFlow network discovery is achieved using packet_in and packet_out messages. As
network ports advertise their discovery information as previously described, that in‐
formation is punted to the SDN controller via the “packet in” rule and processed by the
switch. It is then forwarded to the neighbor switches so they may learn the MAC address.
But the salient point is that the network topology database is constructed.
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Figure 8-6. The use of LLDP as a switch port discovery protocol by an SDN controller

While the method for exchanging LLDP neighbor just described does solve the problem
of neighbor switch topology discovery, there are issues with this approach.

First, the approach is limited to switches that speak LLDP. This is generally not a huge
problem, but as with the other approaches that require speaking a specific routing (or
now switching) protocol, these are things that are very unappealing to applications.

Second, the LLDP topology information is very localized to just the immediate layer 2
neighbors of the switch. If some ports are misconfigured (i.e., their initial configurations
are incorrect), then no discovery is available on those ports.

Finally, topologies that span the zones of purely OpenFlow-controlled switches to those
that are not, or hybrid zones, can have difficulty stitching this information together. The
reason being that (as we described earlier with the northbound APIs of a controller) no
standard for extension over these zones exists; therefore, the exchange of this informa‐
tion is still limited to applications or other controllers that understand a particular
proprietary definition. And along those lines, the topology format itself and what it
contains is proprietary.

Given these limitations, more work is needed toward a repository that allows individual
approaches and datasets that can be merged to create a multilayer view (as per the earlier
figure showing multilayered topology, Figure 8-2).
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BGP-TE/LS
As we already mentioned, there are two basic ways of obtaining network topology in‐
formation: management protocols or routing protocols. One new entrant into the latter
category is BGP Link State, or BGP-LS, as it is more commonly known. One thing that
we did not go into detail on in the earlier discussion around routing protocol-based
approaches (but did mention) is that the routing protocols contain information suitable
for routing calculations, which is not necessarily optimal for other computations need‐
ing topological information. BGP-LS sought to correct this deficiency.

BGP-LS is an extension to BGP that allows it to carry link-state information. This link
state information is acquired from the IGP as is normally done with other state infor‐
mation, but in this case from the area’s traffic engineering database (TED). This infor‐
mation can be aggregated from multiple areas and autonomous systems to perform
interesting analyses of the state of the network.

Both the IGP’s TED and the topological data gathered using BGP-LS should provide
the same set of information. However, BGP-LS was invented specifically to leverage
some properties of BGP that give it better scaling characteristics. These include TCP-
based flow control and the strategic use of route reflector(s). It is for this reason that
BGP-LS is also a more scalable choice when one needs to acquire multiarea topology
information, which traditionally required one to gather it from each individual AS using
more manual means.

A traffic engineering controller (e.g., an application of the PCE Server) will implement
BGP-LS as a means to acquire the routing topology. In the context of SDN, this is (of
course) just another SDN application/controller pairing. We in fact describe the con‐
troller in Chapter 4 and a use case in Chapter 12. BGP-LS also supports a policy mech‐
anism whereby one can limit the exposure of certain nodes/links or sections of topol‐
ogies as partitioned by the user. A TE controller will provide the requisite knobs to
support this feature.

In the case where a topology change event such as a link/node going down occurs, the
IGP flooding mechanism allows the topology information to be propagated to the TE
controller much faster than as would be accomplished using BGP-LS. This is because
BGP-LS has to wait for the local IGP on the routers in the network to update the TED
before the BGP-LS signals this change event to its peers. This delay should not adversely
affect the real time characteristics of the collection using BGP-LS.

So why was BGP-LS invented? What problem is it solving that wasn’t already solved?
As we just mentioned, there were already manual ways to obtain the network topology
as well as joining routing to get routed link state information. There are several problems
with the information contained within routing protocols for the purposes of topology.
Let’s investigate them now.
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BGP-LS with PCE
We described earlier in Chapter 4 how a path computational element (PCE) can be used
to compute MPLS-TE paths. When those paths were computed, they were done so
within a domain such as an autonomous system (i.e., an IGP area), or computed across
multiple ASs or area domains.

In these cases, we described how PCE could offer enhanced computational power
through the use of COGS hardware in order to run the CSPF algorithm offline to routers
that might have older or simply less powerful hardware. Additionally, alternative CSPF
algorithms could be employed for custom computations that might not be available in
some particular commercial hardware.

The problem is that in these cases, the lack of global topology (multidomain) might
hamper the accuracy of these computations. For example, the wrong exit router for a
particular path might be chosen, or the wrong transit node might be chosen. In other
cases, simply non-optimal paths might be chosen.

In order to solve this problem, the PCE needs access to the overall or global, TED. Some
previous solutions made the PCE a passive listener to the IGP much as we just described
in the solutions that joined routing in order to glean the topology, but as we have dis‐
cussed, this does not always provide the best format for this information. Figure 8-7
shows how a PCE can get its TED information by joining routing as well as leveraging
BGP (BGP-LS).

Figure 8-7. External PCE node using a TED synchronization mechanism

Going forward, the PCE server will be able to acquire a global topology through BGP-
LS peering across multiple domains.
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3. IETF RFC4627

ALTO
One of the first efforts to standardize not only the format of topology information, but
also making that standard format available to applications that do not interact directly
with routing protocols was the Application-Layer Traffic Optimization (ALTO) Net‐
work Service. This is an important change, as modern applications are generally not
written to do this. ALTO provides network information to applications, such as the
network location, structure, and preferences of the network paths to various network
services.

Currently, ALTO is aimed at providing these paths for content delivery networks
(CDNs) and is also how it is being used in practice. The goal of providing this infor‐
mation is to inform applications such as those seeking the closest CDN server. In pro‐
viding this information, applications such as this can improve application performance.
An interesting side effect is that this service has the potential to further optimize network
resource consumption patterns, which is very desirable for network operators.

The basic information an ALTO service provides is based on abstract or logical topology
maps of a network. The maps can be constructed from physical or logical topology that
is ingested by the ALTO server.

As we discussed earlier, network topologies can be physical or logical; in this case but
not only logical but also at the level of network services.

In Figure 8-2, where we showed the layered topology, this is represented at the very top
of the layers. The abstract topology maps provide an abstracted view of CDN nodes and
the relative weights of paths between those nodes in the network. This has the effect of
simplifying the topology scope down to a set that CDN-related applications are inter‐
ested in. If they are interested in additional details, they are able to then consult other
topological resources such as management interfaces or routing-based resources, as
described earlier.

The ALTO server is a network service that is exposed to network-aware applications
over a web services API. The ALTO protocol uses a RESTful design and encodes its
requests and responses using JSON.3 As indicated in Chapter 5, modern applications
programmers choose this approach because of its flexibility and extensibility.

We also consider ALTO a precursor to the modern SDN movement and paradigm
change. If viewed in this light, the ALTO server and protocol can be considered an early
entrant into the SDN controller implementation space.

Figure 8-8 shows an example of an ALTO server and the network service it provides.
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Figure 8-8. ALTO service architecture

BGP-LS and PCE Interaction with ALTO
As we described in the previous section, BGP-LS and PCE can be combined to form a
more optimal solution for cross-AS path computation due to the faster, more consistent,
and scalable acquisition of link state topology information.

We also described an ALTO server as an entity that generates an abstracted network
topology and provides it to network-aware applications over a web service−based API.
Example applications are p2p clients or trackers, or CDNs. The abstracted network
topology comes in the form of two maps: a network map that specifies allocation of
prefixes to PIDs, and a cost map that specifies the cost between PIDs listed in the network
map. ALTO abstract network topologies can be autogenerated from the physical top‐
ology of the underlying network. The generation would typically be based on policies
and rules set by the operator.

Both prefix and TE data are required: prefix data is required to generate ALTO network
maps and TE (topology) data is required to generate ALTO cost maps. Prefix data is
carried and originated in BGP, and TE data is originated and carried in an IGP.

While ALTO provides a single interface through which an ALTO server can retrieve all
the necessary prefix and network topology data from the underlying network, an ALTO
server can use other mechanisms to get network data (e.g., peering with multiple IGP
and BGP speakers). Figure 8-9 shows how an ALTO server can get network topology
information from the underlying network using the mechanism just described.
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Figure 8-9. ALTO server using network topology information

While ALTO continues to be deployed and implemented, its applicability and use re‐
mains limited to that of CDNs. Some have ventured outside of this area, but there is
little traction in doing so. We conjecture that this is because, while the protocol and
architecture are indeed flexible enough to be used for other things, there seems to be a
perception that CDN is what ALTO should be used for.

I2RS Topology
As we mentioned in Chapter 4, an early effort called SDNP was hatched by a number
of people in an effort to standardize a few key components of what was (at the time)
canonical SDN architecture. This architecture was comprised of a logically centralized
controller that interacted with and/or controlled the data and control planes of a set of
network devices. The controller presented the services it implemented using a RESTful
web services API.

As we described, this effort was before its time and dwindled away. From those ashes
came a new effort at the IETF that was originally named the Interface to the Routing
System (IRS). Too many people objected to that name on the basis that it gave them
undue heartburn by reminding them of Uncle Sam, and so the name was changed
slightly to be the Interface to the Routing System, or I2RS.

Although still in its infancy, this effort now has strong support within the industry and
continues on a successful trajectory at the time of the writing of this chapter. We hope
this effort continues to blossom as it has the potential, at least, to solve some of the
stickier issues around SDN: the standardization of the northbound API (I2RS can both
read and write network state), and most apropos for this chapter, the standardization
of a generalized network topology service.

As we just described, ALTO was an early effort at the IETF to construct a standardized
topology collection and representation service consumable by applications using an
application-friendly API. Unfortunately this effort seems to be stuck on CDN. To that
end, generalized topology was added to the charter of the I2RS working group as one
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of its key work items. Let’s describe what this means and the current state of these affairs
to better understand why this effort is important.

One key facet of the I2RS topology manager is the collection of topology (and topology
related/co-incident) data from multiple sources, including network elements, routing
protocols, inventory collection, and statistics collection.

It should be clear from the descriptions of the aforementioned topology efforts and
approaches why collection from a diverse set of sources that include routing protocols
is critical to form a complete and useful view of the network topology.

To this end, topology data sources may reside in multiple IGP areas, across multiple
ASes and/or in multiple network layers (including administrative domains/systems
within a single organization, like transport and routing). In addition to the usual links
and nodes (both virtual and physical) that are provided by these sources, some other
data sources such as some explicit node function (of a network service appliance), sta‐
tistics, or physical inventory can be injected to augment the topology map.

This information might be used by the topology manager (e.g., in providing an opera‐
tional map/view interface), but is likely to be even more interesting for applications such
as network analytics, service location, and provisioning.

Ultimately, the topology manager’s goal is the creation of global topology view. In prac‐
tice this will be realized and presented to applications based on a common data model,
used to normalized collected data and transform it into a standardized format that will
be easily consumable and portable across applications. The topology view can ultimately
span multiple network layers as well as multiple autonomous systems or entire networks,
depending on how well different administrative domains will cooperate and share in‐
formation.

It is important that the global view includes all network elements and resources existing
in the infrastructure, whether they are actively used or not. An example consists of
reconstructing the global view of the network, including router or switch ports that are
available but not in use. Another may be constructing a global view of network, in‐
cluding router/switch ports and both used and unused underlying transport network
elements. These are important for computing “what if?” scenarios.

This sort of operation is very difficult using the routing protocol-based approaches, for
example, as the information is simply not present in any active routing updates (though
the need has been exhibited through modifications to routing like the recent introduc‐
tion of the SRLG concept in the MPLS-TE). It can only be done using additional means
such as a proprietary CLI.

Once topology information has been gathered, it is important that it be presented in a
format acceptable to modern applications. To this end, the topology manager will digest
the information and normalize it using a standardized object model. This object model
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will also be used to generate the REST API that applications will use to gather this
information.

At the top level, it all sounds fantastic until one realizes the sheer volume of information
that might be present in a topology server. It is thus very important that the topology
manager can create multiple (perhaps application-specific) views from its common
global topology database. This (in a way) allows an application to specify a filter criterion
for viewing information. For example, we just described an ALTO server. One could
very well ask a topology server to only return CDN-tagged nodes and paths from the
database, thus providing it with the CDN topology layer.

Topology information from network elements is relayed into the topology manager
function via its southbound API, as shown in Figure 8-10. Sources of topology infor‐
mation may be network elements at different layers of the network, such as appliances,
routers, Level 2 switches, optical transponders, optical switches, or monitoring, provi‐
sioning, and network analytics tools (such as statistics collection subsystems or an in‐
ventory subsystem).

Figure 8-10. I2RS Topology Manager operational model

In terms of implementation, the topology manager function can be instantiated in a
stand-alone server, be a part of a comprehensive orchestration, data collection, presen‐
tation framework, or even embedded in a routing element. A client can be an application
or a function in an upper layer framework, such as a policy function. Depending on the
data it collects, a topology manager may not have visibility into the entire network. In
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order to create a global topology, the topology manager may get complementary partial
topology views from other topology managers via a peer topology manager API.

Conclusions
Topology is one of the critical pieces of information many applications require from the
network. In this chapter, we have explored topology and tried to emphasize its criticality
in the context of SDN.

While this book cannot capture all possible examples of SDN services—for example,
policy could be its own section—topology is demonstrated here to illustrate a widely
used example of an SDN. It is intended, in combination with Chapters 5 and 9, to
illustrate SDN as a programming/development environment and how topology repre‐
sents what we think is a critical component of this environment.

If a single SDN controller solution/architecture represents itself as the arbiter of SDN
but has a limited view of topology, it limits the view of SDN to that subset of the network
world. A current example of this conundrum is the OpenFlow controller paradigm,
which currently only learns layer 2 topology via LLDP but is being augmented to un‐
derstand at least an abstraction of the underlying transport network. This is a clear
example of why generalized and abstracted topology is needed in order to form the most
flexible and generally applicable solution.

Through the review of the limitations of historical OSS/topology interchanges, if they
can be described as such, and the arc of management protocols, then LLDP, BGP-LS,
ALTO, and finally the latest work in the IETF’s I2RS Working Group, the requirements
of topology as a service have been honed through experimentation, trial and real-life
deployments. This evolution similarly tracks the evolution of SDN, from proprietary
systems to service-oriented to (hopefully) open and modern northbound and south‐
bound interfaces.

Related to the ongoing work in the network topology area are efforts to be done on
storage architecture (tools and schema) of a multilayer topology and its artifacts.
For example, we could devote a chapter to graph databases like Neo4j, Titan, Jung, the
TinkerPop toolkit, and the API that summarizes and/or joins the individual layer views.

In this chapter, we’ve hopefully developed the concept that topology is more than nodes
and links. Instead, it’s a rich set of surrounding information about or coincident with
those nodes and links, as well as inactive or dormant network components. We have
also hopefully impressed upon the reader here that access to this information needs to
be done via modern, application-friendly interfaces such as the ones described in
Chapter 5. For example, one clear mistake of the past has been to require that an ap‐
plication speak routing protocols in order to participate in network topology, or gain
access to it via a proxy that does speak routing. We showed why this is clearly an un‐
wanted and undesirable situation for modern applications programmers.
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There is a lot of enthusiasm in this area, but still a lot of work to do. There is a significant
task going forward for the area of network topology itself. Within the context of SDN,
it will be defining the data models for the many topology sources that may exist in an
SDN framework. This is needed to standardize and normalize the topology both on the
wire and once it is extracted by an application, making these operations ubiquitous
rather than laborious. We described this in the I2RS section and hope that we empha‐
sized the relative importance of this effort to the wider SDN effort; without standardized
topology upon which many other facets of SDN depend, the larger effort will not be as
productive or impactful as it could be.
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CHAPTER 9

Building an SDN Framework

Introduction
We can trace the history of the software-defined networks (SDN) concept reasonably
well back to 2007−2008, when Nicira/VMware, NOX, and other related university ef‐
forts first appeared on the scene. Since that time, SDN as a technology has evolved and
advanced, but has unfortunately still bounced between a variety of proprietary con‐
troller proposals with no firm plan for interoperability between these controllers. Worse
still, this lack of interoperability between controllers—or how to communicate with
them—prevents the applications that network operators, controller vendors, or third-
party software houses build to function seamlessly across different controllers. Fast-
forward to 2013, and a number of controllers and controller strategies exist but still
none of them work together—at least easily. This certainly is a problem looking for a
solution that we think can be solved by defining an SDN framework that is built upon
an open source code foundation to ensure not only its syntactic correctness, but its
semantic correctness, too. Then that framework and its ancillary components, such as
protocols or protocol extensions, can be standardized at a standards organization such
as the IETF.

In this chapter, we will introduce and describe just such an idealized SDN framework
to which controllers might rally around. This framework first came from proof-of-
concept work we did at Juniper, but now also appears in a slightly different form, as part
of the Open Daylight Project’s (ODP) controller framework. As part of the ODP frame‐
work, it will also find its way into the open source codebase to which ODP is building
an industry standard SDN controller from. In this way, we believe definite progress is
being made in the industry as solving one of the biggest challenges ahead for fulfilling
the key promise of SDN: tighter integration between applications and the network.
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Build Code First; Ask Questions Later...
To be fair, vendors built and still do build code and ask questions later in terms of
interoperability. Some publicly distanced themselves from any standardization efforts,
claiming that they would hamper innovation velocity or worse, produce controllers that
were beholden to incumbent equipment vendors who really had no interest in sup‐
porting the brave new world of software-defined networks. What resulted is that no
single vendor could deliver an open/multivendor standards-based northbound API for
application development, or an open/multivendor standardized state distribution in‐
terface between controllers. This started to become problematic once controller offer‐
ings began to leave the test and qualification lab environments and be considered for
real deployments. The fact that the controllers lacked the ability to manipulate the exact
same type of state objects from multiple vendors (e.g., two OpenFlow controllers from
different vendors) or across administrative domains (assuming the same vendor but
two discrete databases) was an issue. Additionally, the lack of a definitive standards-
based solution for southbound controller/agent protocols meant that the choice of any
one controller required interoperability qualification testing with each and every de‐
ployed switch and also required subsequent testing if new switches were considered
later. These problems came to a head when these controllers were considered for inte‐
gration into operational support systems used by providers and enterprises to provision
and control their overall networks. A final hurdle was the lack of application portability,
a direct result of the failure to establish a standardized northbound SDN API. That is,
those applications that relied on the controller to interact with the network, or network
services, would need to be purpose-built based on the choice of controller. Suddenly
the promises made by SDN for lower operational cost resulting from tighter interaction
between operational software, software applications, and network elements were ques‐
tioned.

To give some examples of why a standardized framework as well as a de facto codebase
implementing that framework are important, consider how port management of
OpenFlow-enabled switches is managed. In these situations, dilemmas can arise relating
to port ownership, such as control delegation. Although this exists even within a
monoculture of the southbound protocol that is prevalent in the generation of SDN
controllers discussed in an earlier chapter, this difficulty can be worsened in cases where
multiple controllers are desired.

For example, within the OpenFlow controller paradigm, if an operator were to choose
vendor A because it had a preferable orchestration application to control ports in their
data center switches, and then later choose vendor B because that one had a desirable
virtual network tap application, how would they rectify control of the forwarding table
between two controllers when both tried to program the same switch? Worse, since
neither of the SDN controller vendors had settled on a standardized or even prearranged
upon northbound API, the orchestration application from vendor A would likely be
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1. In fact, in the current OpenFlow paradigm, this is not supported. One of the applications in question would
have to be rewritten to the other controller vendor’s API.

2. For vendors with an established footprint, the solution is obvious—“support my agent and/or my API on
your platforms”. The question then becomes how many of these agents can reasonably be supported and
whether the vendors of the network elements are willing and able to support this solution.

unable to communicate at least completely with vendor B’s controller. The same would
be true for the virtual tap application. In essence, this comes down to having no inter‐
operable API for passing state or arbitrating control.1

Other fallout of the protocol monoculture is a somewhat stunted service set available
on the controller, notably in the area of topology. This is true because most SDN con‐
troller/agent protocols obtain topology for the layer of abstraction the mono-culture
provides—layer 2/MAC/FIB, layer 3/RIB/LDB, or layer 4+/service. The result is that a
network-wide view is unavailable. Since this so critical for certain network control ap‐
plications, such as the PCE server-based or segment-routing cases discussed in Chap‐
ter 4, those solutions simply will not function.

Finally, this lack of interoperability means that there is a limited ability to integrate SDN
controllers into so-called hybrid operating environments without additional “glue” ap‐
plications to arbitrate between the different ports. For example, the ability to stitch a
VxLAN overlay driven by VMware/Nicira SDN systems to a subscriber VPN VRF in‐
stance at a data center gateway will require some automata—possibly via a NETCONF-
based application or provisioning script.2 Figure 9-1 demonstrates a similar scenario
whereby a BigSwitch Networks Floodlight controller and a Trema OF controller both
expose different northbound APIs that applications must interact with. Neither provides
a consistent interface to which applications programmers can code to, nor do they pro‐
vide the same network abstraction of the underlying switches or other services, such as
topology, that they expose.
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Figure 9-1. Big Switch Networks Floodlight controller and Trema OF controllers both
expose different northbound APIs that applications must program to

Though some of the controller environments support modern development languages
(e.g., Python) and coding methodologies (e.g., the Eclipse development environment),
they also provide robust albeit proprietary frameworks that support and encourage
application development. These environments include well-documented APIs to pro‐
gram to as well as debugging/test tools. In truth, most support some combination of
these attributes. The question is: how do these controllers accommodate new or addi‐
tional services, augmentation to what existing controller service apps provide, or cross-
controller programming capabilities? After all, if SDN is really all about applications,
then answering these questions is critical. Taking this a step further, one should then
ask that if it is all about the applications, isn’t there an argument in all these controller
options for openness, interoperability, and modularity? This wouldn’t be without prec‐
edent in the networking industry or even in the SDN solution space (e.g., OpenStack).

This view—that the SDN controller shouldn’t be a protocol mono-protocol culture but
should be open, modular, and focused on services provided to application developers
—has led to the definition of SDN controllers as network application development
frameworks. This is why we believe that this combination of elements will foster and
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result in the ultimate goal of rapid application development of applications that interact
seamlessly, rapidly, and efficiently with the network and the services it provides.

Because some of the SDN controller services envisioned in the evolution of the frame‐
work concept are so demanding to support, the view of the controller has also migrated
from a single device or even a simple federation of devices, to systems of devices and
virtual machines hosting different components of those services. These components
can then in-turn be federated through one of the system members, but also orchestrated
as a single system through the network orchestration system. Let’s investigate what it
means to be an SDN framework and how one might evolve, keeping in mind that the
concept of exactly what that framework looks like has been evolving with the other parts
of the SDN technology it binds together.

The Juniper SDN Framework
In early 2011, prior to their acquisition of Contrail Systems in 2012, Juniper Networks
put forward the idea that SDN should be more than a controller, but rather a framework
that supports various service elements that when put together as a system, form a con‐
troller. More importantly, the goal of the project was to demonstrate how the system,
when put together properly, could ultimately support a tight feedback loop between a
network application and the network, thus supporting what we felt was the holy grail
of SDN: network programmability.

Juniper Networks demonstrated a Java-based framework with a RESTful API that served
as a rapid prototyping environment to aid in the development of new and useful network
applications. A simple yet groovy scripting interface was provided that enhanced the
API by blending it with an SDK concept. The fundamental concept was that the basic
network application services components of the traditional controller (e.g., topology,
path computation, and path provisioning) could have several sources. The service sour‐
ces would provide their services through a plug-in architecture based on a common
plug-in model definition that could be extended in the future to accommodate future
applications. The generalized application services created would provide their own
northbound APIs that abstract the capabilities of the southbound plug-ins. In this sense,
these applications could recursively define new services that other services could con‐
sume or interact with.

The controller system doesn’t have a storage interface and serves more like a service
bus. The path computation service was provided with the actual Junos CSPF algorithm
(after conversion into a Java applet) that was used in Junos devices. This algorithm was
accessed through the plug-in infrastructure. The path provisioning service was provided
through multiple southbound protocols and accessed via their associate plug-ins, as
shown in Figure 9-2. These included NETCONF (via a NETCONF driver), path com‐
putation element (PCE) (via a Java-based PCE server), and OpenFlow (via a plug-in
written for Big Switch Network’s FloodLight controller). The topology service was also
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provided through multiple plug-ins, including BGP-TE/LS using a Java-based BGP-TE
client, ALTO (both a client and server modules were available), and static file import
capabilities to facilitate rapid and easy configuration capabilities of the system. There
was also a topology acquisition plug-in for the OpenFlow controller, since it provides
the required LLDP-based topology needed for OpenFlow-based control at the time.

Figure 9-2. Juniper Networks proof-of-concept SDN framework

The proof-of-concept application that Juniper demonstrated was the so-called band‐
width calendaring application (BCA), which is explored in Chapter 10. The purpose of
the BCA is self-descriptive—an application-based reservation of bandwidth through an
example or relatively static network. These reservations can be based on a future res‐
ervation or immediate need and with or without a termination time (duration). This is
a common application in research networks and in a few large Web 2.0 network service
providers, too.

The application showed the framework modularity:

• The API made the application neutral to whether the elements in the selected path
supported OpenFlow or a PCE manipulated MPLS LSP. This was done though the
operator, or the application could specify a preference via the API.
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• Active topology support via BCA used BGP-TE and OpenFlow to gather active
topology information, although the topology that wasn’t normalized. In an all-
MPLS solution, where PCE provisioning in the network to accommodate flows was
used, reservations were maintained within the distributed TED. The TED was up‐
dated through the BGP-TE/LS client whenever an LSP is updated or created. In a
mixed network, the application has to manage the reservations on OpenFlow seg‐
ments.

• The topology could be expanded through the use of OpenFlow configuration sup‐
port and MPLS NETCONF/Yang models, albeit Juniper specific, that turn off/on
MPLS or OpenFlow support in additional elements via a NETCONF plug-in.

The real point of the BCA application was the API that exposed the possibilities of
network programmability. Two examples of the API were demonstrated. The first was
a Guava-based visualization application acting like a traditional OSS-like console that
presented the combined OpenFlow-only or PCE-only topology and the reservations in
the system. The system would allow an application using the programmatic interface
to program reservations as well as interrogate the state of the reservations and network
paths. The second was via a Java applet that embeds the API that emulates a video on
demand application. Other applications could then interact with this API.

In the latter stages of the concept period, this applet was moved from being runnable
on a server that connected to various areas of the test topology to a port that became
an Android app that was demonstrated on an Android tablet. This effectively demon‐
strated both a consumer use of the API and how network operators were moving toward
using iPad and Android applications to manage and interact with their networks.

For this application, because the client is not as capable of handling large topologies,
the ALTO client/server interaction was used to limit the topology that would need to
be digested by the tablet app. In effect, the ALTO server would refine the search for a
path to a best server, which was resolved in a first step ALTO query. This is congruent
with the demands of most applications that would most often not want to view the entire
network topology, but instead, an abstraction or otherwise filtered version. This is dis‐
cussed in more detail in Chapter 8.

Some of the lessons learned in the exercise were:

• Topology is a fundamental data resource provided from network to application,
and topology from multiple sources is hard to normalize from multiple sources,
especially when representing multiple network layers. This is especially true if those
layers are virtualized or require some sort of abstraction, as is the case when viewing
layer 1 (i.e., optical) topology. These results in fact have allowed us to drive some
of the IETF work in topology.

• Policy appears to be a fundamental application service, as it was embedded in every
application generated.
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3. http://tools.ietf.org/html/draft-nadeau-sdn-framework-01

4. http://tools.ietf.org/html/draft-nadeau-sdn-problem-statement-01

5. http://tools.ietf.org/html/draft-nadeau-sdn-framework-01

• Structurally, the framework could have been better designed. For example, the APIs
produced should be self-generating, which is what a number of other more recent
approaches implement. This is incidentally called a data-driven approach and was
discussed in detail in Chapter 5.

Unfortunately, for a variety of reasons, Juniper Networks never productized BCA or the
framework it developed, although there has been talk of doing so in lieu of the Open
Daylight Project as well as an application for the Contrail Controller.

The Juniper POC framework as well as the IETF frameworks that followed can be de‐
scribed as brokers. Conversely, many of the controller strategies position the concept
of a Network Operating System (NOS) as a replacement for distributed routing protocols
that oversees the data plane of the managed elements on behalf of applications that
define network services. In the broker model, applications interact with the network via
the broker so that they or the network can be more efficient, enforce target SLAs, or
provide a more satisfactory end user experience. The obvious distinction between the
models is in the type of application that the architecture is meant to service (the breadth
of the solution).

IETF SDN Framework(s)
The fundamental framework concept began to manifest in IETF proposals for SDN
work groups in 2012, particularly in the Application-Based Network Operations (AB‐
NO) and Software-Driven Network (Protocol), or SDN(P), proposals. To date, neither
of these proposals has gotten much traction in the IETF, but they have translated into
some efforts that have (e.g., the Interface to the Routing System, or I2RS). Also, these
early efforts do illustrate some notable refinements to the Juniper POC framework that
were enacted along the way.

SDN(P)
The Software-Driven Networks (Protocol)3 effort was a proposed IETF Working Group
that sought to explore and define protocols, architectures, and use cases4 in the SDN
problem space. In the architecture draft, the framework concept5 just described is
prominent, and captures the need for additional service components (e.g., policy) miss‐
ing from the Juniper Networks framework. In fact, the framework of this effort was at
least in part inspired by the Juniper SDN framework.
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The SDNP architecture (Figure 9-3) proposed the concept of an orchestrator as the
point of control and coordination in the system. This was a bit different from the ap‐
plication in data center orchestration that plays the role of a controller of control planes
(i.e., the OpenStack Orchestration System). This role was also a bit different from what
at the time was a simple OpenFlow controller. This control point was software that acted
as a hybrid external control plane with other protocol capabilities such as OpenFlow on
the southbound side. In fact, much of this is what eventually turned into the hybrid
OpenFlow mode at the ONF, but was later rejected. This entity was defined to manip‐
ulate the object models of the different plug-in southbound protocols, each of which
was required to produce a self-describing object model that could also be used to gen‐
erate a northbound API. These concepts were later common in the newer commercial
controller offerings, including the use of a data/object model that self-produces an API,
which was recently proposed for the Open Daylight Project controller.

Further, the proposal outlined a plan to rationalize or normalize communication be‐
tween this controlling entity and the plug-ins that formed the essence of a plug-in con‐
tribution model. Finally, the proposal accounted for the federation or the horizontal
communication between orchestrators, which is effectively a messaging bus concept
that is still missing from most controllers today.

Figure 9-3. IETF SDNP framework straw man

Sadly, this effort was a bit ahead of its time for a variety of reasons. First, the IETF did
not understand how to make heads or tails of SDN concepts and so could not figure
out which one of the many areas—or collections of working groups—to put this into.
Second, there was a lot of push back from the ONF, which was just formed and grabbing
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6. http://datatracker.ietf.org/doc/draft-farrkingel-pce-abno-architecture/

all of the SDN land it could, and so claimed it would handle these concepts. Unfortu‐
nately, this turned out to be largely optimistic. The IETF did ultimately find its way to
form a working group that would work on the topology and programmatic and policy-
based routing system programming, which are very important elements first discussed
here. This group is now called the Interface to the Routing System (I2RS). Many of the
other areas are being taken up by the Open Daylight Project.

ABNO
The Application-Based Network Operations (ABNO)6 framework (Figure 9-4) first ap‐
peared in the Routing Area Workgroup as a proposal to extend the existing work items
in the PCE working group, or perhaps even to form a separate working group. In the
proposal, there is less focus on the suggested plumbing between the components than
the SNDP proposal had made. Instead, the group took the tactic to focus on the roles
of some of the components. In doing so, it avoided the term “SDN,” which many at the
IETF did not understand, and as such would avoid like the plague.

The framework reiterates the necessary role of policy in the framework. The proposal
went beyond a simple PCE server in that it accommodates multiple southbound con‐
figuration/provisioning interfaces, including: PCE, OpenFlow, SNMP (as an interface
with older OSS/BSS systems), NETCONF, and FORCEs. It also supports an interface
similar to the one that is being proposed by the I2RS Working Group.

Some of the ABNO framework’s unique ideas come from its PCE focus, in that:

• It includes the suggestion of the requirement for some troubleshooting, debugging,
audit, or verification tools via an OAM Manager.

• In addition, it introduces a new component, the Virtual Network Topology Man‐
ager (VNTM—RFC5623). Because PCE can be used to create LSPs on both a layer
2 or layer 3 substrate, as well as an underlying optical transport system using G-
MPLS mechanisms. The VNTM is used to normalize virtual topology between
layers in the network and is a concept discussed earlier in Chapter 8.

The enhancement of topology with inventory information is other idea that is borrowed
from I2RS. The ABNO Controller component handles request management from a
traditional NMS/OSS and also arbitrates between PCEs in a hierarchical or inter-
domain PCE arrangement. In this way, it allows for the federation and coordination of
PCE controllers. It also forms a way in which they might be plugged into a larger or‐
chestration system such as an OSS or even an OpenStack orchestrator.
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Figure 9-4. Generic ABNO architecture

Open Daylight Controller/Framework
In early 2013, the lack of a standard northbound SDN APIs for controllers, the lack of
support for a hybrid mode of operation, and the proliferation of definitions as to what
southbound protocols could define SDN beyond just OpenFlow came to a head with
many prominent equipment and controller vendors in the industry. There had been a
number of pushes to define these things in standards organizations such as the IETF,
but those failed, and at the same time, ONF’s reluctance to actual take on any of these
issues in a serious manner simply pushed the industry to look in a different direction.
It was at this time that a number of companies, including Cisco and IBM, discussed how
forming an open source SDN controller project whose goals would be to create a com‐
mon controller infrastructure as a vehicle to overcome the issues just mentioned was
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7. http://www.opendaylight.org/announcements/2013/04/industry-leaders-collaborate-opendaylight-project-
donate-key-technologies

8. The announcement was immediately followed by statements from the ONF that they too would be working
on a standardized northbound (application) API.

9. http://www.osgi.org/Technology/WhatIsOSGi

started. By February of 2013, the Open Daylight Project (ODP) consortium7 was formed
as a Linux Foundation project.8

Because the ultimate goal of this organization would be that of application portability,
the organization was thus chartered to create a common SDN controller infrastructure
that possessed a well-defined (and ultimately standards-based) northbound API, as well
as support for a variety of southbound protocols. The result of the Open Daylight Project
will be an open source controller/framework for SDN applications that creates a de facto
northbound API standard that can then be used to program different southbound pro‐
tocols, including OpenFlow, I2RS, and NETCONF.

This project is seeded with intellectual property, money, and engineering resources in
the form of developers from multiple companies. It seeks to incorporate the lessons
learned from the past controller and framework explorations into a state-of-the-art
controller/framework that can be leveraged as the basis for what ultimately is enhanced
network programmability.

Though it’s anticipated that some vendors may continue to offer proprietary controllers,
these are likely to standardize the infrastructure of these controllers on ODP’s code
much like Linux has achieved. Since any vendor is free to wrap its own proprietary/
value-added offerings around the core infrastructure either as a plug-in module, to
digest and support the Open Daylight application API as immediate strategies for in‐
teroperability, or simply to add technical support in their own offering, a number of
enterprise versions of the ODP controller are expected in the future. For the longer
term, contributions may arise that standardize the east-west interface for the exchange
of network operational state between Open Daylight and other controller solutions, as
well as to enhance the interoperability of controller federation both within a single
operational domain and across administrative domains.

Because it borrows from many of its immediate predecessors, the Open Daylight frame‐
work (Figure 9-5) is very modular, Java based (i.e., a pure JVM), and supports bidirec‐
tional REST and OSGI framework programming. This will support applications that
run in the same address space as the controller application.9

At present, ODP is very focused on service. A service abstraction layer (SAL) maps both
internal and external service requests to the appropriate southbound plug-in and pro‐
vides basic service abstractions that higher-level services are built upon, depending on
the capabilities of the plug-in(s).
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Figure 9-5. Open Daylight idealized framework/controller

An example of such a service would be the data packet handling service, which would
allow an application like ARP handling to register interest for sending/receiving certain
packet types without having to be aware of the methods or capabilities of the individual
plug-ins that may provide or send these packets. Other interesting and important built-
in services include topology abstraction and discovery, PCE-P (and CSPF), OpenFlow,
I2RS (as it evolves), and NETCONF.

Though in its early stages, some of the proposed contributions already include advanced
functions such as a virtualization management suite that can be used for building and
tracking overlay networks. Another important proposed contribution is that of network
function virtualization (i.e., service chaining) control. So, as you can see, the potential
for building a very sophisticated and functional controller on which very sophisticated
applications can be rapidly build is a very real possibility.
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API
One of the architectural tasks in the Open Daylight Project is to make the northbound
API match some reasonable subset of the southbound API, which will be populated by
a variety of protocol plug-ins (see Figure 9-5). One of the proposed Open Daylight
contributions is a high-level data model compilation scheme that is based on Yang and
is to be used for the purpose of auto-API generation/update of code and will have the
capability of dynamically grafting new portions of the object model on the fly. This is
very cool functionality in that it will obviate the need to restart the controller. It also
allows for dynamic service model discovery by applications both at the time they con‐
nect to the controller and on an ongoing basis, potentially allowing them to dynamically
adjust based on reading in the altered or updated model. Some have envisioned appli‐
cations even being able to autogenerate (or regenerate) much of their internal code based
on the object model changes simply by reingesting the model as a change is detected.
This current use of the data model does fall short of the proposal seen earlier in Chap‐
ter 4, in that an SDN controller/framework can be viewed as a network compiler, al‐
though it is very possible to modify the model in the future to function as a compiler
generating network element configuration. In this model, the high-level data model
allows the application/operator to simply express intent, and the controller executes this
by compiling the intent into primitives (i.e., code) that it executes.

One of the attractions of that proposal is that reversing the compilation process should
aid in troubleshooting. That is, if the compiled data model should transition intent to
network state, it should be able to take in network state and flag any state that does not
map back to intent through a reverse process, or potentially other problems that can be
detected at compilation time, such as invalid configurations. This could also theoreti‐
cally be a great policy enforcement and/or operations troubleshooting tool, as it allows
an operator to visualize changes before they are pushed down to actual network con‐
figuration.

However, there may be performance implications in compiling every transaction be‐
tween the high-level data model and a lower-level data model to implement the network
primitives. In particular, if change sets occur too frequently, and the generation and
subsequent programming of those changes into network elements takes too long, this
could pose a problem. For example, if the system relies on implementation of the feed‐
back loop between the applications, controller and network elements that we described
earlier, the longer it takes to run through these phases, the longer it will take for the
entire system to react to faults or other situations requiring adjustment.

The Open Daylight Project’s use of data models is a bit simpler. Each module self-
publishes its API when it is activated using the OSGI model. The new module’s API
might then be consumed by any other interested (i.e., already running) module. This
implies that an API versioning scheme will be part of the overall framework, as API
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10. There are a number of good articles on open source database (particularly NoSQL database) experiences in
startup application development. Some of these articles explore the tradeoffs in consistency, availability, and
partition avoidance/recover expressed in CAP theory. An example: http://ria101.wordpress.com/2010/02/24/
hbase-vs-cassandra-why-we-moved/.

versions may change between load/unload cycles. It is hoped that the dynamically load‐
ing object model just described might help with this too. The ODP controller framework
embodies the concept of a loosely coupled service bus approach to wiring internal
modules together. In short, the design is such that not everything has to pass through
storage to enhance performance. An example of this appropriate to the Java-based con‐
troller might be the use of publish/subscribe and a Java Message Service (JMS) provider
service that supports the JMS API. In this case, JMS providers can support both publish
and subscribe and asynchronous message domains. Ultimately, though, network state
will have to be stored some place, which can be in memory or to permanent storage.

High Availability and State Storage
ODP implements a cluster-based, high availability model for state and event synchro‐
nization. In its original model, the controller stores everything in memory and uses
JBOSS Infinispan for replication. One of the framework’s projects is to create a frame‐
work backend that provides partition tolerant storage. This fundamental problem lies
behind the database synchronization strategies of most (non-mem-cache-based) SDN
controllers. More recent controller designs try to position nonrelational databases (i.e.,
NoSQL) for storage of network state as opposed to the mem-cached behaviors of the
older, open source controllers or the use of relational stores in highly integrated
orchestration-specific solutions. The trend in recent controller development has been
to leverage Cassandra as a distributed key/value store for network state with support
for a high transaction rate and Zookeeper for distributed element discovery/tracking/
configuration management.

Nonrelational databases scale particularly well horizontally (i.e., elements of the data
base—or shards—can be distributed to different processors and physical disk storage,
while appearing consistent to the observer). In this way, NoSQL approaches can also be
used in grid file systems. These approaches are particularly useful where the application
is not concerned with transactional behavior but instead is interested in a consistency
and available model. However, transaction processing can be supported through Zoo‐
keeper, which can also be leveraged as a locking service to support read/write coordi‐
nation in Cassandra as a lock manager. Open source variants are available with the same
relative performance as key-value stores but with the flexibility of relational databases.

Through the right parameterization, partition recovery can be implemented in a data‐
base like Cassandra and an eventual consistency model like the CAP Theorem.10 Other
applications may not be tolerant of an eventual consistency data store (like Cassandra)
and may engender additional storage interfaces/contributions.

Open Daylight Controller/Framework | 275

http://ria101.wordpress.com/2010/02/24/hbase-vs-cassandra-why-we-moved/
http://ria101.wordpress.com/2010/02/24/hbase-vs-cassandra-why-we-moved/
http://www.it-ebooks.info/


11. There are stand-alone, grid-based analytics systems available today from companies like Guavus.

Analytics
If the purpose of SDN is to expose network information to applications, then arguably
the two most important network information pools to the application developer will be
the information pertaining to certain utilization characteristics of network elements
and services. For example, the canonical link and resource information can be used to
gauge the expected or actual application performance across a network. When this
information is combined with topology, some interesting and very powerful results can
be obtained. For example, a combination of inventory, multiple layers of topology that
can be cross referenced, and resource location on that topology—e.g., a service layer—
when cross-referenced with certain performance data, can determine if network re-
optimization might be needed.

Both the Open Daylight controller/framework and many other recent controllers ac‐
knowledge their roles in managing the virtualized infrastructure by incorporating sta‐
tistics gathering and event notification into their management session data streams.
They all attempt some sort of active topology discovery, albeit with limited layers of
topological visibility, but the aim is still the same. Because it is an analytics data source,
the controller/framework will need to provide an API to access this data store.

Stand-alone analytics applications have been gaining popularity and deployment, as
they can help address some of the operational problems of network operators. Since
this goal is well aligned with the goal and function of SDN, it’s not surprising that many
of the more recent SDN controller strategies propose an analytics service or application.
These applications generally contain a collector, rules engine/processor, storage back‐
end, visualization, and some sort of query interface. The management of information
collection, particularly flow data, can create a scalability problem for the SDN controller
in terms of creating limitations along various vectors; these include I/O, storage, and
processing. Most of these lead to overall control session limits. Compression of flow
data is normally a part of these systems, and an outstanding question is whether dis‐
tributed processing in the form of grid computing (Figure 9-6) is applicable to this
problem. How and where this would be integrated into a controller11 is another inter‐
esting question.

Traditional relational databases are too slow for the high volume of data these systems
generate. Newer NO-SQL databases haven’t been universally applied in stand-alone
applications but are showing promise in this regard as their scalability and performance
seems acceptable for other large stores of data. Something important to observe is that
this database technology transition has already taken place relative to network state
storage in the newer generation of SDN controllers.
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Figure 9-6. Guavus grid computing solution to analytics data compression

As we mentioned earlier, the requirement for analytics goes beyond basic packet coun‐
ters or traditional statistics, which need to be synthesized into flow information in order
to be useful. In particular, this information needs to be synthesized and correlated in
certain ways in order to be useful when describing the virtualization or overlay layers
an SDN controller might be managing. Traditional network element (i.e., router, fire‐
wall, switch, NIC, and so on) port packet counters can expose overall link utilization
but not the source of that utilization unless somehow correlated back to a particular
port and ultimately a VM. This is possible if the VM is relatable to a specific virtual port
and a specific flow or set of flows, which is expected in the virtualized environment.

Resolution of flow data back to customer significance for the purposes of troubleshoot‐
ing may require some callback/API to the orchestration system. The reason being that
these routines are being incorporated in underlay elements as part of the sometimes
exclusive API access arrangements between network equipment vendors and partner
orchestration/SDN system vendors. Accomplishing this is more difficult for traditional
network elements, which can export flow information via traditional means (Netflow,
Jflow, IP-FIX), but these encapsulations are not granular enough to generally be asso‐
ciated with a VM, at least not easily.
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12. http://conferences.sigcomm.org/sigcomm/2012/paper/hotsdn/p19.pdf (and many others, some of which ref‐
erence http://www.sigcomm.org/ccr/papers/2012/January/2096149.2096152, which is available by subscrip‐
tion).

13. http://www.splunk.com/ and http://blogs.splunk.com/2011/12/05/introducing-shep/

The combination of utilization and topology could lead to powerful new applications,
most of which leverage the provision/analyze/optimize feedback loop archetype
common in SDN. An example combining this feedback loop with a BigData application
is discussed as a use case in Chapter 10 where instant CSPF in the WAN is a potential
application. At one point, there was research that suggested that tightening this loop
might aid in the scalability problem created by imposing new flow tables on existing
(less capable) hardware. For example, when OpenFlow was superimposed on hardware
forwarding architectures that were not TCAM based, it was discovered that the con‐
troller had to carry much of the burden of fault detection and reaction.12

There is an ongoing association between analytics and big data insofar as the collection
of data and its subsequent manipulation and analysis. For example, product Splunk13

takes incoming stats data, massages it, and stores it in flat files called indexes. Splunk
fosters many open source uses of their API, e.g. Shep, which allows streaming the Splunk
data into a Hadoop environment to further boil down that data. Some analytics products
provide trigger/response mechanisms that can be useful in applications like the miti‐
gation of incast/microburst problems in the data center.

Incast occurs when a request for data or set of commands to multiple destinations results
in a large burst of data/traffic back from each of those destinations to the requestor
closely correlated in time (Figure 9-7). For the length of the overlapped burst, you get
N:1 oversubscription, resulting in latency transients, tail drops, or simply packet loss
along that path.
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Figure 9-7. Incast/micro-burst

Policy
Analytics can also drive or aid in network policy control. In the evolution of frameworks,
we have seen the recurring return to policy as a component that can be used to drive or
manage operational behavior. While ODP is the closest to a complete framework avail‐
able in what can be a commercial or open source offering, its early days architecture
appears to be missing a policy component. Thankfully, with the modularity of the
structure, this can be added to the service framework with relative ease and is likely
something that we will propose in the near future.

Conclusions
The objective of this chapter was to illustrate the evolution in thinking about SDN
control by illustrating a few frameworks, as well as to conclude with what the current
thinking is for an ideal controller. We did not attempt to define controllers in depth, as
Chapter 4 surveys the controller paradigm in detail. What we did intent to do is illustrate
that behind a well-designed controller lies a well thought out framework on which it is
not only based, but will continue to be built on in the future.

The SDN framework should act like an architectural blueprint for where the controller
is and wants to be. To this end, we presented and defined such an idealized SDN frame‐
work that we hope will be used going forward by controller vendors and developers.
We described the key elements of this framework including a north- and southbound
API, a dynamic programming environment, and the importance of a state storage
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scheme. We described the elements of policy and analytics and how they play a key role
in both a framework and a sound controller implementation.

We also discussed how the controller/framework evolution is also the evolution in
thinking about the ideological purpose of the control entity: the NOS or broker/
compiler.

There’s also some unsettled debate about the nature of SDN that we touched upon. In
particular, is it truly about bidirectional communication between the application and
network or could it be an entirely reactive model as expressed in the mobility space
through the use of policy?

We think it should be bidirectional (Figure 9-8). We think that one of the main tenets
of SDN is the feedback loop between an application, the SDN controller, and the network
elements that it controls. This touches on network programmability, or how the con‐
troller is programmed insofar as how it acts as a proxy between the network elements
it controls and the application.

Figure 9-8. SDN as a bidirectional conduit between application and network
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1. These examples are not meant to be “cookbooks” (each could spawn its own book at an appropriate/usable
level of detail for that function), but rather a greater illustration of the use of SDN as applied to the WAN.

CHAPTER 10

Use Cases for Bandwidth Scheduling,
Manipulation, and Calendaring

Introduction
Bandwidth calendaring is a category of use cases1 that (at their heart) embody the con‐
cept of time-based bandwidth manipulation. In these cases, the manipulation refers to
the addition, deletion, or modification of bandwidth in the network. The reasons, or
triggers, that would cause one to perform bandwidth manipulation vary widely but
include modification of bandwidth characteristics to more closely match traffic pat‐
terns, service demands and disruptions, or operational planning for future changes such
as capacity. The common theme here is that these generally involve some sort of tem‐
poral cycle. In fact, not only is the bandwidth manipulated on some sort of timed
schedule, but the causes for manipulating bandwidth are usually motivated by a need
to do so based on some sort of schedule that otherwise would be (or is) performed
manually. Let’s explore.

And let’s start simply. Figure 10-1 demonstrates a scenario where a service provider
owns two data centers that are interconnected by some network links. One is located in
Sunnyvale, California, and the other in Portsmouth, New Hampshire.
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Figure 10-1. Data center interconnection example

The data centers are purposely geographically diverse to facilitate a lower-latency user
experience and also to handle disaster recovery scenarios. To this end, each data center
contains virtual machines that are used to host and operate the company’s web-based
music streaming service. Each data center contains, at stable points throughout the day,
a copy of the other’s customer records, music database, and other important informa‐
tion. Each data center is connected to the Internet, allowing proximity-based, low-
latency access to the service, depending on the latency each user has between the music
services.

In order for all of this structure to be kept transparent to the user and to make using
the service as intuitive as possible, each VM is setup to appear as if it is the same service,
even though it is logically servicing a partition of the superset of users. When users
contact www.TomsMusicStreaming.com, they connect to the web server located closest
to their current location (in reality this means of course that they connect to only one
of the two aforementioned data centers). Well-understood web traffic load balancing
(not discussed here) efficiently distributes user requests to one data center or the other.
So conceptually, while the streaming music service appears to reside behind whichever
service access point the user chooses, the reality is that this database is actually made
up of two subsets of the same database at any given point in time. Both sides of the
service implementation (therefore the VMs) could potentially serve the same user too,
with one song coming out.
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However, in our example, the user can stream music only from the database of songs
housed in their particular data center. Since the overall database of information (say,
user account billing information) that resides behind the web service actually is imple‐
mented as two logical partitions of the same logical database, both halves of the database
must be periodically synchronized in order to keep it consistent. This is called database
replication, or synchronization, and takes many forms, which are beyond the scope of
this use case. But any kind of database synchronization requires some amount of net‐
work bandwidth in order for various pieces of the database—whether considered
chunks of files, entire files, or the entire database, simply being copied as one large file
—must be transferred over some network. It is this database replication and synchro‐
nization that is often performed at low-use or off hours. In many cases, these off hours
can be correlated to daylight versus nighttime or diurnal usage patterns.

To continue with TomsMusicStreaming.com, let’s say that the database is accessed mostly
during the day, U.S. standard time, due to most of its customers being located in the
United States. Let’s also assume that at night, the majority of users do not use the service
to stream music. Since it has also been determined that the music must be available
regardless of locale, periodic synchronization of both customer records and music files
must be done. It’s safe to assume that both servers and network bandwidth between the
data centers are underutilized during nighttime hours and that network operators would
choose to synchronize the databases during these hours. It’s easy to imagine an operator
pushing a button on a console to trigger a nightly backup or synchronization activity,
or have some job automation function trigger this at some fixed time.

In the past, a common approach to the algorithm just described was to simply set up
bandwidth between both data centers that could handle the computed worst case for
bandwidth demand between the two sites and call it a day.

Upon closer inspection, however, if one weighs the bandwidth versus the cost per bit
and then compares that against the actual amount needed, during any given time of the
day, this model is quite wasteful based on the diurnal example discussed. For example,
let’s assume the most bandwidth used is during the day, with peak demand requiring
85% of the network’s resources, but that nighttime data replication duties require only
40%, so paying to provide similar bandwidth during nighttime hours is rather wasteful.
Assuming TomsMusicStreaming.com has access to flexible pricing of bandwidth, it
makes sense to be able to adjust bandwidth on a time-based demand model. Even for
fixed priced bandwidth, being able to shut down or idle virtual machine or network
equipment resources could be a significant optimization of power, lowering heating and
cooling bills. To these ends, calendaring—making a forward reservation of path and
bandwidth—is one such way to optimize our use case.

In a more global context, where large-scale transfers and their ensuing reservations may
span multiple time zones (international), the overlapping diurnal usage patterns of the
intervening network(s) may obscure a simple calendared reservation for an optimal
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2. See Inter-Datacenter Bulk Transfers with NetStitcher by Nikolaos Laoutaris, Michael Sirivianos, Xiaoyuan
Yang, and Pablo Rodriguez; Telefonica Research.

direct transfer solution. And depending on the application and business operation tol‐
erances, a store-and-forward path (a series of shorter distanced transactions) may exist
that also provides significant economies.2

Because of the complex relationship between path availability, utilization information,
and other mitigating factors (bandwidth cost, policy, and resource competition), it may
be harder now for the reader to imagine the fictitious operator (manual) action, or even
the job automation function trigger, providing the level of accuracy and responsiveness
needed to realize the efficiencies promised in a bandwidth calendaring application.

Such an application will work with the controller or framework described in prior
chapters to extract information from the network (active state), make an informed path
computation for the transaction, manage the reservation, and when the time comes,
provision the path linking application source and destination flows.

While it is possible for that same operator to have “push button” console control of a
reservation through the application’s GUI, the real power of the application is derived
when the API calls made to trigger its services are embedded in the application them‐
selves (or at very least through some broker or proxy). This programmatic interaction
with the network is an example of the power of SDN.

Of course, behind the opportunity to gain new efficiencies through this interaction,
many carriers or service providers may see an opportunity to sell new services that
exploit the capability to schedule during low utilization periods.

Bandwidth Calendaring
Let’s now look at a more detailed example of bandwidth calendaring, as shown in
Figure 10-2, which is a real implementation of our conceptual TomsMusicStream‐
ing.com example. See ya, Tom.
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Figure 10-2. Bandwidth calendaring example

Base Topology and Fundamental Concepts
In Figure 10-2’s topology, there are five routers located in Japan. Each router is posi‐
tioned to support multiple sites for multiple tenants of the service provider. All five
routers support both the OpenFlow protocol and MPLS/IP (to show how the solution
may work with multiple different controller types).

Our Bandwidth Calendaring application runs on top of a conceptual SDN controller or
framework of multiple, interchangeable controllers and other services.

Paths for reservations can be constructed (or signaled) using a variety of methods: the
Open Flow protocol, MPLS Label Distribution Protocol (LDP), MPLS Traffic Engi‐
neered (RSVP-TE) paths computed by the routers, or PCE-P paths computed by a PCE-
P application running on the controller. Let’s focus on examples around OpenFlow and
PCE.
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In the case of OpenFlow, the application could reside above an OpenFlow controller
(which provides layer 2-oriented topology, path computation, and provisioning serv‐
ices), whereas the PCE example would require more of a framework of services (since
the PCE server does not have an integrated topology service component).

OpenFlow and PCE Topologies
A private management LAN is implemented allowing direct Ethernet connectivity be‐
tween the controller and each device in the network. Though the OpenFlow control
paradigm does support inband connectivity between the controller and network ele‐
ment, out-of-band connectivity is more common and less fraught with the concerns that
may arise when mixing control and data traffic on the same link. Other controller types
may not assume/require out-of-band connectivity.

In general, at the edges of our topology, there are Virtual LAN (VLAN) or raw Ethernet
interfaces representative of a data center (of virtual machines, databases, and services
needed by the tenant customer) and/or a customer/subscriber site network.

Assuming that our switches understand both IP/MPLS and Openflow (and can be con‐
figured as hybrid switches), and because the control of the individual ports is exclusive
between the legacy MPLS/IP control plane and an OpenFlow controller, each edge
router/switch is interconnected to another via two or three links (or in some cases,
virtual links) to create our core topology.

For our specific examples, a subset of ports/links provide the infrastructure needed to
construct a layer 2-only topology using Ethernet/VPLS encapsulation (which will be
controlled via hop-by-hop OpenFlow flow entry mechanics).

Another subset provides the IP/MPLS topology (for the purpose of illustrating the ex‐
ample, these topologies may not completely overlap, allowing for layer 2-only sections
of the network). To exploit the MPLS/IP path, an IGP-based underlay (on the
MPLS/IP enabled links) is needed.

Nigata and Osaka are not configured/enabled for transit OpenFlow paths. All nodes are
capable of MPLS/IP transit.

Because of specifics of the switch implementation of hybrid mode, the OpenFlow con‐
trolled ports are interconnected with the VPLS instances or MPLS LSPs by virtual tun‐
nels (a virtual tunnel construct can have one logical end in a layer 2 forwarding instance
and another in a layer 2 or layer 3 instance).

With this basic setup, paths can be established across the core of the network intercon‐
necting the sites using a variety of methods, all of which technically can be considered
SDN (given the fact that the control plane is being distributed from the data plane in
this example).
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Once baseline connectivity is established, reservations for specific client flows can be
accepted by the calendaring application via its visualization interface or from clients
passing through embedded API calls.

The most basic API call would be parameterized with a path preference (optional), a
path provisioning method preference (optional), and flow information (resolvable
source and destination address, flow sockets, or other match detail), bandwidth re‐
quested, flow duration, and start time (optional). Note that the default could be imme‐
diate, which would allow for the rule to be acted upon immediately after the command
was consumed.

Our specific example will illustrate reservations/flows between Sapporo and Kagoshi‐
ma. In particular, video client will be used on the (customer) subnet 3.3.3.0/24 in Sap‐
poro to a video server (2.2.2.2) at the Kagoshima site. The reservation will be asymmetric
(6.4 Mbps for high-definition video from the source to receiver and a 10 Kbps back-
channel for video session maintenance from the receiver to the source).

The supplementary files contain the complete configurations for this
chapter’s use case plus instructions on how to build a fully function‐
ing working demo to explore.

Example Configuration
While the previous example is by no means an effort on our part to show that only
Juniper Networks MX Series can be used to construct a bandwidth calendaring envi‐
ronment, this does happen to be a working, functional prototype we have built. In order
to aid in the instructional nature of the example, we provide the actual configuration
files for the example on this book’s website with its publisher. The configurations are
relatively brief and do work as is (with the exception of the obscured password strings)
on Juniper MX80s running Junos 12.3I0. Note that the use of this configuration does
require the use of the Juniper SDK. Signing up for the SDK will also provide you with
the configuration files for the Bandwidth Calandering Application SDK application
source code. This should give you a fully functional working demo to explore.

OpenFlow Provisioned Example
It is useful to remember how the OpenFlow configuration and flow provisioning model
works. That is, TCP (secured via TLS) sessions are established between the controller
and any OpenFlow-capable router, and subsequently Open Flow messages are ex‐
changed over this control channel. Configuration messages establish the relationship
of controller(s) to network elements (including flow retention behaviors, master/slave
roles in the case of multiple controllers, port mapping to controller instance, and other
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3. At the time this book was written, the ONF Configuration WG was working on a bootstrap routine to allow
automatic configuration. Currently, some static configuration is required.

basic configuration items). This configuration process leverages OpenFlow-specific
Yang data models and the NETCONF protocol.3

In this example, the controller discovers topology using LLDP, but other mechanisms
are possible, including Cisco Discovery Protocol (CDP), ICMP probing, or even static
programming.

Wire protocol messages populate forwarding tables (on behalf of the application, in a
proactive model) using messages that specify a table and a combination of packet header
match/modification rules that include input port (on which to match) and either
next_table or output port actions as specified in the OpenFlow wire protocol. As a
simplification for our example, these rules indicate which traffic flows should be switch‐
ed between one or more input and output ports.

Looking at the base configuration, the Kagoshima switch needs OpenFlow access to
four ports: ge-1/0/5.0 (flow source/sink), logical tunnels lt-0/0/10.0 and lt-0/0/10.150
(providing access to the MPLS LSPs in layer 3 instance), and lt-1/0/10.0 (access to the
VPLS instance interconnecting the OpenFlow transit routers).

The OpenFlow switch/controller sees these ports like this:
admin@Kagoshima> show openflow switch info 0
 1(ge-1/0/5.0): addr:64:87:88:5a:d2:5d, config: 0, state:0
 2(lt-0/0/10.0): addr:64:87:88:5a:d1:f8, config: 0, state:0
 3(lt-0/0/10.150): addr:64:87:88:5a:d1:f8, config: 0, state:0
 4(lt-1/0/10.0): addr:64:87:88:5a:d2:58, config: 0, state:0
 LOCAL(lo0.0): addr:64:87:88:5a:d2:f7, config: 0, state:0

When the client application is spawned off of Sapporo and requests a video flow from
Kagoshima, there is an option to specify (in the applet and in the API) an OpenFlow
only path. Selecting this option forces the flow through Tokyo.

Two uni-directional flows will be created.

Flow state in the path routers/switches (cut down outputs):
admin@Sapporo> show openflow switch statistics flows all
cookie=0xffffffffda6979c2, duration_sec=15s, duration_nsec=116000000ns, 
  table_id=0, priority=32767, 
  ip,in_port=1,nw_src=2.2.2.2,nw_dst=3.3.3.3,actions=output:4
cookie=0xa00000138ac0f2, duration_sec=15s, duration_nsec=116000000ns, 
  table_id=0, priority=32767, 
  ip,in_port=4,nw_src=3.3.3.3,nw_dst=2.2.2.2,actions=output:1

admin@Tokyo> show openflow switch statistics flows all
cookie=0xa000002d2dd7a5, duration_sec=56s, duration_nsec=116000000ns, 
  table_id=0, priority=32767, 
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  ip,in_port=1,nw_src=3.3.3.3,nw_dst=2.2.2.2,actions=output:2
cookie=0xffffffffa31ecf59, duration_sec=56s, duration_nsec=116000000ns, 
  table_id=0, priority=32767, 
  ip,in_port=2,nw_src=2.2.2.2,nw_dst=3.3.3.3,actions=output:1

admin@Kagoshima> show openflow switch statistics flows all
cookie=0xa0000061b156c3, duration_sec=101s, duration_nsec=116000000ns, 
  table_id=0, priority=32767,ip,in_port=4,nw_src=2.2.2.2,nw_dst=3.3.3.3,
  actions=output:1
cookie=0xa000006e97ed68, duration_sec=101s, duration_nsec=116000000ns, 
  table_id=0, priority=32767,ip,in_port=1,nw_src=3.3.3.3,nw_dst=2.2.2.2,
  actions=output:4

Focusing on the Kagoshima outputs, mapping the outputs backwards to the port out‐
puts is straightforward.

Note that while the duration of the flow requested maps to the duration of the flow entry
from the controller, there is no way (in the flow entry) to express the bandwidth reser‐
vation. This would be tracked separately and is available through the visualization in‐
terface or analytics interface of the Bandwidth Calendaring application.

Enhancing the Controller
To further illustrate the utility of the controller, let’s take a closer look at what compo‐
nents could comprise that controller. Figure 10-3 illustrates the details of what might
comprise the innards of a basic controller that can be used to realize the previous
example.

Figure 10-3. Breakout of Openflow controller
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4. draft-crabbe-pce-pce-initiated-lsp-00 describes the ability to perform PCE-initiated LSP setup and builds on
prior work for “stateful” PCE [draft-crabbe-pce-stateful-pce-mpls-te-00].

First, Figure 10-3 shows a RESTful API to the controller that can be used to communicate
with it (therefore, create new LSPs, delete them or change the time-based scheduling of
existing LSPs). This is illustrated with the Firefox icon communicating with the GUI.
The addition of a RESTful interface to a controller is important, as it allows for fast,
flexible interaction with the controller, and it also is a preferred application program‐
ming interface (API) used by modern application programmers such as those that create
applications using Java, Python, or Perl.

Next, the RESTful interface manager communicates with the scheduler. This component
does what you would expect: it is responsible for managing the schedule of programmed
events for LSP creation, suspension, and tear-down. In reality, this can be as simple as
a configuration file, or as complex as a multisharded SQL database. The scheduler then
interacts with the topology manager component. It is responsible for managing and
maintaining the topology. For the purposes of this example, let’s assume that this is a
repository of information gathered by LLDP, as discussed earlier. However, as noted,
this database might be populated using a variety of mechanisms, including Cisco Dis‐
covery Protocol (CDP), ICMP probing, or even static programming. Finally, the sched‐
uler interacts with the OpenFlow controller. This component in our example here is
fairly straightforward and was built on the open source Floodlight controller, but you
could easily replace it with most any of the open source controllers—or even roll your
own.

Overlay Example Using PCE Provisioning
The more evocative example would be the use of stateful PCE, otherwise known as PCE-
P. When you consider the use of external C-SPF algorithms that run on the controller,
PCE-P is a very attractive option. PCE allows the application, via a PCE server, to ma‐
nipulate the ERO of previously configured and delegated MPLS LSPs in the topology
or dynamically create new LSPs (depending on the level of PCE support in the element
software4). This is illustrated in Figure 10-4.
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5. Options for active topology are discussed in Chapter 8.

6. draft-crabbe-pce-stateful-pce-protection-00 proposes the ability to create or manipulate path or local pro‐
tection for created or delegated LSPs.

7. draft-crabbe-pce-pce-initiated-lsp-00 proposes the ability for a PCE to initiate LSPs on the PCC.

Figure 10-4. Conceptual PCE-P operation

The initial provisioning of the test bed can be automated in a similar method as the
OpenFlow example (NETCONF/Yang).

Topology for PCE can be provided to the application via a static file (many tools can
construct topologies from configurations or IGP database dumps), but to be useful, an
active topology is preferred.5

The fact that we’re using MPLS LSPs for our overlay brings forward several advantages:

• The provisioning happens only on the edge devices.
• There is potential for protection (reserving and provisioning both active and back‐

up paths).6

• The potential for dynamic LSP provisioning (our example allows the PCE to ma‐
nipulate the ERO of an existing, pre-configured infrastructure LSP).7

• Natural affinity between existing path calculation algorithms (CSPF) and topology
models like those provided by BGP-TE/LS.

• Active reservation management in the RSVP→BGP-TE/LS feedback cycle.

This last point can be either a blessing or a curse for the application developer, and is a
distinction from the OpenFlow model. In the PCE model, the reservation requests (the
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8. draft-marques-sdnp-flow-spec-01 proposes the ability to extend flow classification to fields other than IP
destination address in RFC5575 and draft-simpson-idr-flowspec-redirect-02.txt proposes changes to redi‐
rection rules in the same RFC (which will make it more useful as a policy-route on-ramp function).

bandwidth reservation in the RSVP path request) are managed in the traffic engineering
database (TED) and can potentially be constantly updated in the topology (if you choose
BGP-TE/LS for topology learning). So, in the PCE model, the overall reservation of the
system is a combination of the pending or future reservations (yet to be committed)
and the existing active reservations. In the OpenFlow model, the reservations are man‐
aged solely as part of the application.

Both models need strategies for accounting for unreserved bandwidth. In the case of
OpenFlow or PCE, this may be embodied in analytic updates. PCE has an option of
mapping default traffic (unmatched) to an auto-bandwidth tunnel and capturing a pe‐
riodic bandwidth utilization figure for those tunnels.

Unlike the OpenFlow-based example, the PCE-based example may require an on-ramp
to map desired traffic onto the MPLS LSP. By default, the LSP FEC will be based on a
destination IP prefix, so traffic maps to tunnels nearest the network node (next hop)
advertising the destination prefix. Because this behavior may not provide fine enough
control, most implementations of MPLS-TE support policy-based routing to load the
tunnel. However, this option brings the burden of manipulating the policies (the vendor-
specific syntax and lock/verify/commit behaviors), limited policy expression, and limi‐
ted scale (in some implementations).

OpenFlow provides an interesting, dynamic, and open alternative for the on-ramp
(traffic matching, filtering, and/or redirection) function. By using the matching capa‐
bilities of OpenFlow, you can map desired flows to the logical port represented by the
MPLS-TE tunnel (LSP).

Other alternatives for on-ramp functionality may become viable in the future (e.g., via
extensions to BGP Flowspec8).

Making the same request as in the prior example but not specifying an OpenFlow-only
path causes our reservation to use an MPLS LSP manipulated by PCE.

Again, two uni-directional flows are created and (in this case) two uni-directional MPLS
LSPs are manipulated to accommodate the reservation. Figure 10-5 illustrates how both
can be achieved in a single network using a single controller.
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Figure 10-5. PCE-P and OpenFlow

Let’s look at Kagoshima outputs.

Here, you expect to see the reservation of the named LSP Kagoshima_to_Sapporo ma‐
nipulated (all the infrastructure LSPs were set up with a zero bandwidth reservation)
and two flows created:

admin@Kagoshima> show mpls lsp extensive name Kag_to_Sap
Ingress LSP: 2 sessions
10.10.10.100
  From: 10.10.10.118, State: Up, ActiveRoute: 0, LSPname: Kag_to_Sap
  ActivePath:  (primary)
  LSPtype: Externally controlled, Penultimate hop popping
  LSP Control Status: Externally controlled ← controlled by a PCE
  LoadBalance: Random
  Encoding type: Packet, Switching type: Packet, GPID: IPv4
 *Primary                    State: Up
    Priorities: 0 0
    Bandwidth: 6.30146Mbps ← up from original reservation of 10Kbps
    SmartOptimizeTimer: 180
        No computed ERO.
admin@Kagoshima> show openflow switch statistics flows all
cookie=0xa0000046ada2b3, duration_sec=42s, duration_nsec=883000000ns, 
  table_id=0, priority=32767, 
  ip,in_port=1,nw_src=2.2.2.2,nw_dst=3.3.3.3,actions=output:2
cookie=0xffffffffd2efad8b, duration_sec=42s, duration_nsec=994000000ns, 
  table_id=0, priority=32767, 
  ip,in_port=2,nw_src=3.3.3.3,nw_dst=2.2.2.2,actions=output:1
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9. http://datatracker.ietf.org/wg/alto/ provides copious reading material on the IETF ALTO protocol.

Similarly, you expect an MPLS LSP on Sapporo (Sapporo_to_Kagoshima) to have its
reservation manipulated and dual flows to be entered in the OpenFlow table.

You shouldn’t expect or see any OpenFlow state for this flow in any intermediary router,
even if the LSP path transits an OpenFlow capable element.

Expanding Your Reach: Barbarians at the Gate
Let’s return to the power of SDN applications that reside in the API (and the fact that
SDN is about a programmatic interface) and extend our example to consumer appli‐
cations (hence the barbarians at the gate). So far, the focus has been on high bandwidth
flows in a relatively closed environment, indicative of internal applications on a some‐
what closed network. Conversely, the consumer environment would be characterized
by large numbers of somewhat lower bandwidth flows in a more open environment,
with some required services added to our SDN controller/framework.

While there obviously are needs for security, policy, and potentially interfaces to
OSS/BSS systems (e.g., billing), if the example is extended to an embedded API in a
client browser (or client proxy) that is called when a client attempts to watch a certain
class of videos, we can focus on the topology aspect to discuss the nature of the SDN
API.

For computational and security reasons, you don’t want to expose the entire topology
database to such a client (which could be a smartphone or tablet), yet you need the API
for topology to be scalable and customizable by policy. The ALTO9 protocol offers ex‐
amples of these API services.

Assuming an ALTO server is embedded as a topology provider in our SDN controller/
framework, when users attempt to download a high-definition version of a video, they
would be prompted by an embedded applet (that calls the API using an ALTO client)
to request a paid (the prompt is only needed for the consent, otherwise it may be un‐
necessary), prioritized, or guaranteed path for the flow. By using ALTO between client
and server (controller/framework), you can limit the topology exposed to the client/
caller to something as simple as best path between source and destination or (to a proxy
in the network making calls on behalf of the clients) a limited network view that consists
of high-definition video source islands and usable video links.
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10. The Ofelia research project, OESSS (OES3) software and Juniper Network’s BCA demo application have all
demonstrated Bandwidth Calendaring in 2012.

Big Data and Application Hyper-Virtualization for
Instant CSPF
Up to this point, the examples around the bandwidth calendaring use case have required
a simple set of services provided from the SDN controller/framework to the application.
These focus primarily on topology, path computation, and path provisioning.

The topology is a layer 2 (OpenFlow) or layer 3/MPLS topology (PCE), and the path
computation required is a relatively simple SPF (OpenFlow) or CSPF (PCE) with limited
constraints (current network state, basic analytics in current flow stats and reservations,
and a relatively simple, embedded policy).

The examples in the prior section are practical and demonstrable.10 However, the ex‐
ample can be extended to a more complex application in which the reservation system
of the bandwidth calendaring application is a component. This is illustrated in
Figure 10-6.

Figure 10-6. A predictive, multilayer topology network optimization workflow

Many network operators today perform periodic optimizations of their networks (or
sections of their networks) using offline analytic and computation engines. These efforts
are largely manual (with some potential for automation) and are limited by both the

Big Data and Application Hyper-Virtualization for Instant CSPF | 295

http://www.it-ebooks.info/


11. Though incremental, progress has been made on several of the problems in this area through drafts like those
that allow for sub-LSPs.

capability of the tools used and the static provisioning model (that we were working
around in the bandwidth calendaring application). Because these operations predate
the advent of OpenFlow and SDN-driven overlay solutions, they commonly use MPLS-
TE LSPs to steer traffic (with the same loading/on-ramping limitations mentioned in
the earlier PCE example).11

The working paradigm is to ingest a static topology (depending on the tool vendor, from
element configurations or routing protocol database dumps), flow data, and user-
defined policies or constraints (e.g., maximum path delay or avoidance of Shared Risk
Link Groups) and optimize it for the most efficient network utilization (normally in
both an active and limited hypothetical failure scenarios). The result of an analytical
run is normally in the form of a recommendation that’s exportable to a spreadsheet that
is then converted to vendor-specific tunnel creation syntax/semantics, and provisioned
during a maintenance window. Potentially rerouting traffic during live operation is
problematic for both the time the static provisioning model requires and the fact that
it is impossible to orchestrate the changes in a near-simultaneous fashion in that pro‐
visioning model (which could lead to undesirable interim inefficiencies).

The strength of current offline tools is in the variety of their parameters and policies
they can incorporate and the complexity of the mathematical algorithms they use to
divine a result. But, depending on the complexity and scale of the network itself (or the
flow data), they currently can run for a very long period of time.

Operators would like to take advantage of the provision-analyze-optimize cycle inher‐
ent in the network control SDN promises to implement in a more dynamic/automated
workflow.

In this workflow, the path computation component could optimize based on:
Current utilization

Commonly from a flow data repository

Historical utilization
Generally a less specific graph of utilization based on historical flow data to indicate
a diurnal pattern of network use (this diurnal pattern can be updated with a sliding
window of historical data if there is a distinct variance in the trend)

Future reservations
Managed by the Bandwidth Calendaring reservation system

These inputs will probably not be exclusive, and the real power in prognostication is
derived from their combination.
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12. draft-ietf-idr-add-paths-08 describes BGP add-path operation to expose multiple paths (augmenting best-
path) and draft-ietf-idr-add-paths-guidelines-04 provides guidelines around the use of this enhancement.

Though only a potential application, SDN and big data techniques may provide viable
solutions for this network optimization application, and the range of potential service
demands between bandwidth calendaring and this automated network optimization
(“fly-by-wire”) application accentuates the need for modularity in components and
(again) flexibility in the service APIs exposed.

While the BCA application and its underlying controller(s)/framework provide a tem‐
plate with which to solve this problem, the path computation component will need a
serious upgrade. Also, a more robust analytics module must be incorporated to capture,
format, and (potentially) summarize relevant flow data.

Several commercial tool vendors are addressing the computational complexity of both
the analytics management and path computation problems using big data techniques
—for example, grid computing for customized distributed summarization of analytical
data and Hadoop to farm the computational exercise, and interfacing their results to a
PCE server for provisioning.

The recent IETF draft draft-farrkingel-pce-abno-architecture-02 pro‐
poses a PCE-based architecture that may propel such an application.

Expanding Topology
This use case chapter has focused on dynamic network path creation and network op‐
timization. Now let’s circle back again to topology as a service of the SDN controller/
framework. It should be evidently clear now that network topology is quite an important
aspect and service of the SDN framework because it pertains to both the practical band‐
width calendaring application and the futuristic network optimization application.

In both examples, the topology exposed is limited by what is configured and seen in
either the layer 2 or layer 3/MPLS topologies.

Some operators’ business models require them to optimize by network exit point, and
in some cases, potentially in conjunction with link utilization policies. This often creates
a challenge because most active topology sources include resolution of external prefix
reachability using configured, and therefore distributed, route policy and the BGP best-
path algorithm. This represents only a subset of the true peering points advertising that
prefix. Though enhancements to BGP allow for multiple potential best paths,12 this may
burden the network with an additional active state, especially if you are going to tunnel
traffic to the exit point—and that means that all the intermediary nodes do not need to
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be aware of this state. The solution to this problem is to merge route-server-like state
with the active topology in the SDN controller/framework topology repository. Tools
to collect this information nonintrusively are under development.

Still others would enhance the topology with dark resources that can be used as part of
the path computation solution (where adding additional capacity to handle bursts is a
more preferred policy than rerouting traffic or is used in conjunction with rerouting).
It is important to note that dark resources result from connected but unprovisioned (at
layer 2 or layer 3) ports on network elements. Of particular interest is additional link
capacity at layer 0 (optical paths) that may be made available on demand. The vision
here is that the optical network provider, or the operator of the layer 2/layer 3 network
(if the operator is the transport provider), provides a configurable partition of its optical
network that provides potential paths to the upper layer operator.

Currently, tool vendors (referred to in our prior section) allow the merge of layer 0
topology with upper layer topologies, but this is not yet automated, nor is the data format
standardized. Nonetheless, this topology is available to the path computation engine,
and existing combinations of PCE-GMPLS and proposed extensions to OpenFlow
(Transport WorkGroup) make these paths dynamically provisionable.

Conclusions
This chapter demonstrated a few simple yet important use cases for SDN. In particular,
it showed how one can use an SDN controller in a centralized manner to control network
paths, scheduling those paths at certain times of day or under certain other conditions.
It also showed how a centralized controller on its own provides little value without
additional smarts, such as stateful PCE and offline analytics tools. For instance, the
Openflow protocol section demonstrated that simple path placement using such a tool,
although interesting and instructional as an example, is not particularly useful in real
networks without additional tools that augment the control plane function. This is a
fruitful and interesting area in the SDN space. As additional reading for the reader, there
are a number of interesting advances in the SDN arena around these use cases that we
recommend exploring included in the companion web site. Also, the configurations for
the devices are available on the companion website for you to take into the lab or
elsewhere.
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1. These examples are not meant to be “cookbooks” (each would spawn its own book at an appropriate/usable
level of detail for that function), but rather a greater illustration of the use of SDN in Data Center applications.

2. Our specific use case comes from the health care vertical and the clients can be doctors’ offices or other service
providers both care and business related (e.g., imaging, pharmacy, billing collection, etc.).

CHAPTER 11

Use Cases for Data Center Overlays, Big
Data, and Network Function Virtualization

Introduction
Use cases1 for data centers can be as varied as the applications that reside in the data
center. To tie together some of the concepts from earlier chapters, we’ll look at examples
that demonstrate:

• A hierarchical application with a low degree of multitenancy in an orchestrated
overlay

• A DevOps alternative to overlay orchestration
• SDN in a big data application (application-driven network control)
• NFV/service chaining both in and outside the data center

Data Center Orchestration
The roles played by data center infrastructure can be pure IaaS, PaaS, SaaS, or any
combination of these services.

A typical vertical industry service center that primarily provides SaaS services (a data
center for specialized information management, for example, medical records man‐
agement, human resources outsourcing, etc.2) might envision several client types, with
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varying levels of commonality (the variance comes in how they might connect to the
outside).

Their client’s commonality comes from the fact that all assume some level of public/
Internet access to the SaaS service and that access will always traverse an ADC (the ADC
does some fundamental security, and load balancing).

The operator’s primary concerns are scale, ease of operations, and security. In the case
of the latter, all the systems are to be protected from worms, viruses, malware, and other
types of intrusion.

Figure 11-1. A conceptual specialized service center (data center). Tenant type 1 is com‐
pletely virtualized with two VM pools, the service app (yellow) and their own app
(white). Tenant type 2 has off-premise instances of the app as well as private network
connectivity. They also have their own non-virtual apps and DBMS hosted in the DC
(blue). Tenant type 3 has the service app (virtual) and its own non-virtual app and
DBMS (orange), which are only accessible via the Internet. Tenant type 4 is using the
DC for infrastructure (IaaS) only (dark red).

As shown in Figure 11-1, the first client type has multiple virtual networks within the
data center. The first serves the primary service center application/data management
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function, and the others are outsourced networks for other purposes (thus, the client
subscribes to a combination of IaaS, PaaS, and SaaS within the data center). The client
also manages its own VMs inside its own network, which can attach to the data center.

Addressing from the client network is extended into the service center. This fits the VPN
client model.

There are four discrete flow types:

• Server-to-server within a segment.
• Server-to-server between segments (via the gateway)
• User traffic from the outside via the vADC and vFirewall (the firewall can be inside

or outside the gateway)
• Server-to-server from the client network VMs within the service center to the tenant

network VMs, traversing one or more (local and/or remote) firewalls.

The second client type shown in Figure 11-1 extends the service center application
(SaaS) to its site and may also have a combination of virtual and physical assets in the
data center (the virtual assets are managed via the SDN/Orchestration system). In this
scenario, the virtual machine management extends to the tenant’s own facility.

This mode of operation could fit the cloud-bursting model.

The flow types include #1 and #3 from the former scenario (except for true cloudburst,
the flow in #3 would first use the client site VMs before overflowing into DC VMs).
Flow #2 is slightly modified because it is between a VM and a physical device (which
many not be managed by the VM orchestration system). Flow #4 varies slightly in that
it can be between local and remote VMs, but the DC provider manages them all.

This second scenario introduces two new flows:

• From tenant VMs in the service center to the machines/VMs in their private net‐
work (an extra gateway traversal)

• From remote-but-managed VMs to remote machines in the private network

The third scenario in Figure 11-1 is Internet-access-only, whether for IaaS, PaaS, or the
service center specific applications (SaaS).

And finally, the fourth scenario shown in Figure 11-1 is like the second; only the private
network is not on a client premise, but rather within the service center (an extra-net
connection). Management of that network may be partitioned from the service center
operator or provided by the operator.

What this actually looks like in a data center is a lot less idealized. There could be separate
storage, host, management (both out-of-band monitoring and image load/stand-up),
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and vMotion networks. To realize the benefits of pooling, the network will become an
overlay-heavy physical infrastructure (which is hard to depict in a small picture like
Figure 11-2), as clients get more randomized on that infrastructure.

Figure 11-2. What the service center actually looks like—interspersing of physical, vir‐
tual, and storage placements enabled by overlay virtualization (hard to depict here, but
each color would be a spiderweb of overlay tunnels)

Creating Tenant and Virtual Machine State
In any of the overlay approaches, when the first virtual machine of a given tenant is
instantiated on a server, the following steps need to take place (as shown in Figure 11-3):

1. A new virtual machine is instantiated.
2. A logical bridge for the tenant is created in the vSwitch.
3. The new virtual machine is attached to the logical bridge using a virtual Ethernet

interface.
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4. If it doesn’t already exist, a tunnel is instantiated from the server to each of the other
servers in the data center that has at least one virtual machine for the same tenant.

5. A virtual Ethernet interface is created on top of each tunnel to represent the tenant
ID and attached to the logical bridge (see Chapter 6 for per-encapsulation specifics
on how the tenant ID is transmitted/expressed).

6. Apply services to the virtual interface of the VM such as QoS, firewall policies, access
lists, etc.

When an additional virtual machine for the same tenant is instanti‐
ated on that same server, only steps 1, 3, 5, and 6 need to take place.

Figure 11-3. Adding a virtual machine for a tenant on a server; add first VM for tenant
(1); add additional VMs (2)

It is the responsibility of the SDN controller to create the logical bridge, to create the
tunnels, to create the virtual Ethernet interfaces, and to attach the virtual Ethernet in‐
terfaces to logical bridges. There needs to be some sort of signaling protocol between
the SDN controller and the server to signal these operations, as shown in Figure 11-4.
We discuss this in detail in Chapter 4. In general, the SDN controller is only responsible
for the network aspect of the data center. It performs the low-level network operations
based on high-level instructions from the orchestrator. The orchestrator is responsible
for the overall operation of the data center, not just the network but also compute,
storage, and services.
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Figure 11-4. The role of the orchestrator, the SDN controller, and the NMS

One important observation is that neither the orchestrator nor the SDN controllers
touch the physical network; they only touch the servers. In the overlay model, adding
a tenant or adding a virtual machine to a tenant does not involve any changes to the
physical network. It is the responsibility of the Network Management System (NMS) to
manage the physical network. The NMS needs to interact with the physical network
when switches are added or when servers are added, but not when tenants are added or
virtual machines are added. This is clearly an advantage of the overlay model. The
physical network is very stable and as a result more reliable; all the dynamic changes
related to tenants are dealt with in the virtualized network.

Forwarding State
In addition to the state related to tenants and VMs (namely tunnels, bridges, and in‐
terfaces), there also needs to be forwarding state on the servers for each tenant,
including:

• A MAC address table for each tenant bridge in the vSwitch
• An ARP table for each VM
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This is illustrated in Figure 11-5.

Figure 11-5. MAC table in the vSwitch bridge

The MAC table can be filled in two ways: data-driven learning or control-plane
signaling.

Data-Driven Learning
The data-driven learning approach uses the same mechanism as normal (i.e., non-
overlay) switched networks. Frames with an unknown destination MAC address are
flooded across the entire tenant network. By observing the source MAC address and
incoming interface of Ethernet frames, the switch creates the MAC address table. It also
creates an ARP table. The ARP table that is used to map IP addresses to the MAC
addresses is created through the broadcast of an ARP request across the entire tenant
network. The data-driven learning approach has scaling and stability problems. The
need for STP can be eliminated or reduced by using split-horizon on the tunnel
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3. Arguably, routing protocols are inherently more scalable and stable than switching control protocols such as
STP.

interfaces (never forward a frame received over a tunnel to another tunnel). The data-
driven learning approach has challenges dealing with VM mobility in that it must be
implemented in such a way that can react quickly enough to VM moves to reprogram
all of the information just described.

Control-Plane Signaling
In the control-plane signaling approach, the SDN controller populates the MAC address
table using some signaling protocol (e.g., OpenFlow or XMPP). The controller has all
necessary information: it knows the location, MAC address, and IP address of each VM.
The SDN controller is aware of VM moves and can reprogram the MAC address table
accordingly. The SDN controller cannot use a signaling protocol to fill the ARP table
in the VM because the VM runs application software and cannot be assumed to contain
a signaling agent to communicate with the SDN controller. One option is to use the
normal ARP resolution process and accept the flooded ARP requests. Another option
is to implement an ARP proxy in the vSwitch, which intercepts the ARP requests and
tunnels them to the SDN controller.

Scaling and Performance Considerations
Reviewing the basic advantages of the overlay approach (from Chapter 6):

• No tenant state in the physical switches. Specifically, the physical switches do not
contain any MAC addresses of tenant virtual machines. In the absence of overlays,
the core switches contain all MAC address of all VMs of all tenants.

• If overlay solution uses layer 2 over layer 3 tunneling, there is the option of making
the physical network a layer 3 routed network instead of a layer 2 switched network.
This improves bandwidth utilization and performance (natural multipath support).
A layer 2 physical network uses STP and needs a protocol like TRILL to support
multipath.3

By terminating the tunnel in the hypervisor (e.g., versus using VEPA on the ToR), tunnel
state is distributed among the hosts and their hypervisors. A DC provider presented the
following metrics that we can use in discussing the implications of overlays on tunnel
state:

• Most examples of widely used ToRs today will support 48 hosts.
• Each host currently supports an average of 20 virtual machines.
• The typical tenant will have four or five VMs.
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4. Recall that we are exploring overlays to avoid hop-by-hop flow (e.g. OpenFlow) provisioning. In such a
scenario, the per-port flow scale would be in the hundreds, and internal (spine/aggregation) switches would
see a similar multiplication (48 times or larger) in flow state. This “second-effect” flow scale is problematic
on today’s commercial silicon and may require the application of summarization to be manageable.

A tenant may also need to interface with an appliance (e.g., firewall) and/or a gateway,
as in our example.

Assuming some level of redundancy of the appliance/gateway and a worst-case VM
distribution for the tenant, where every VM on the host is unique, a quick calculation
of the number of potential tunnels would be in the low hundreds (about 160—8 tunnels
per VM, 4 tunnels to other hosts in the group, 2 to redundant firewalls, and 2 to gateways,
20 VMs). The number of flows mapping onto those tunnels can be an additional but
currently manageable scale multiplier (not always a 1:1 correspondence).

As you add VMs per tenant and create a very highly meshed fabric that is further com‐
plicated with technologies like LAG and attempt to exploit that fabric through multi‐
path, the number of tunnels/links per host can scale quickly. Of course, this worst-case
scenario is also based on the assumption that the hosts were capable of (and desired)
full mesh connectivity.

In our specific case, many of the flows must first traverse a firewall or gateway because
there are fewer intra-segment flows anticipated. This is particularly true of the third
tenant type in our service center example (see Figure 11-1), where Internet access may
be only for the service center application. In these cases, the total tunnels in the host
hypervisor approach the number of VMs on the host with some small multiplier for
redundancy scenarios (similarly, the mapping of flows to these tunnels would scale as
noted previously).

Either way, the worst-case scale for this provider’s average tenant size and flows is sup‐
portable on the current generation of COTS hosts. On the other hand, the tunnel state
could be at least order of magnitude larger (potentially 48X) if we originate the overlay
from the ToR switch. This tunnel scale is achievable in some network silicon, but at a
cost.4

It remains to be seen if the next generation of servers/CPUs and its accompanying
increase in VMs supported will fit into the forwarding space of the hypervisors, but the
expectation is that it should be manageable. The bound would not be processing power,
which continues to grow every day, but instead process space within the hypervisor.
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5. Arista Networks supports both Puppet and Chef.

6. This file should (ultimately) move to PuppetForge.

7. One of the themes in this book is the need for the development of standard data models. The VLAN model
is very simplistic, but there is nothing preventing the modeling of overlay encapsulations and other net‐
working abstractions for both network elements and the hypervisor vswitch.

Puppet (DevOps Solution)
If the number of client types and the scale is not overly large (where “large” is objective),
the operator may not need an orchestration-driven SDN solution. The DevOps option
of using a template-based, build-out tool like Puppet, Chef, Cobbler, or Ganglia, may
be appropriate.

The strengths of these tools developed around image/role and server management,
including address assignment and network configuration (for both bare metal and vir‐
tual hosts). For example, when using Puppet, the role of the Puppet Master is to assign
nodes (devices) into classes (e.g., web server, database server, etc.). Each class definition
describes the catalog of resources needed on device (e.g., Apache, MySQL, etc.). The
resources describe what to do, not how to do it.

Applying this concept to networking, the resources would be interfaces, VLANs, and
so on. If the operating system of a traditional network element supports a Puppet client/
agent, interesting solutions can emerge. For example, if the scale of the data center
operation was small enough to fit within the scope of VLAN separation (not requiring
an overlay), then extensions to Puppet can be used to configure VLANs on ports and
trunks appropriate to such an architecture.

Juniper Networks and Arista Networks have both extended Puppet to support agents
in their respective OS(s).5 In our example shown in Figure 11-6, the (Juniper Networks)
solution consists of two files:

• The first, /netdevops/netdev_stdlib, includes Puppet type definitions for netdev
resources. Netdev is a vendor-neutral network abstraction framework created by
Juniper Networks and made freely available on GitHub.6

• The second file, juniper/netdev_stdlib_junos, uses Junos OS-specific code that im‐
plements each of the types defined by netdevop/netdev_stdlib.

This latter file is necessarily vendor-specific, working around the current lack of com‐
mon data models for these services.7
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Figure 11-6. Network element support for Puppet netdev

This combination supports the following types:
netdev_device

Models the properties of the network device.

netdev_interface
Models the properties for a physical interface. The properties for a physical interface
are managed separately from the services on the interface.

netdev_l2_interface
Models the properties for layer 2 switching services on an interface. The services
for a layer 2 interface are managed separately from the physical interface.

netdev_lag
Models the properties for a link aggregation group (LAG). The properties for a LAG
are managed separately from the physical member links and services on the inter‐
face.

netdev_vlan
Models the properties for a VLAN resource.

For a user of Puppet, assignment of VLANs to a host would mean editing the netdev
section of the manifest for a host. The Puppet master will compile the manifest and the
changed code can be (periodically) downloaded by the host/element (via SSL).

For example, deploying application foo on switch fooswitch1 in bar.com (assigning
foo to a port and a trunk with VLAN 100 to talk to other foo-like servers) would look
something like:

node "fooswitch1.bar.com" {
   netdev_device { $hostname: }
   netdev_vlan { "Foo-net":
      vlan_id => 100,
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   }
netdev_vlan { "Native":
      vlan_id => 103,
   }
   netdev_l2_interface { 'ge-0/0/19':
      untagged_vlan => Native,
     description=>"local foo host port"
   }
   netdev_l2_interface { 'ge-0/0/20':
      description => "trunk Link from local ToR",
      untagged_vlan => Native,
      tagged_vlans => [ Foo ],
   }
}

Though this example is relatively static, most DevOps template/script languages are
highly parameterized and can use class definitions. The Puppet framework enables
large-scale changes to devices by simply changing the class definition on the Puppet
master.

Our example with variable definition might be as follows:
$vlans = {
   'Foo'    => { vlan_id => 100, description => "This is a foo vlan, just updated" },
   'Native' => { vlan_id => 103, description => "This is a native vlan" },
}

And this might be its corresponding class definition:
class foo_switch {
   netdev_device { $hostname: }
   create_resources( netdev_vlan, $vlans )
   $db_port_desc = "This is for foo-ap"
   $db_ports = {
      "ge-0/0/0"  => { description => "${db_port_desc} ge0" },
      "ge-0/0/1"  => { description => "${db_port_desc} ge1" },
}
   $db_port_settings = {
      untagged_vlan => Native,
      tagged_vlans => [Foo]
   }
   create_resources(netdev_l2_interface,$db_ports,$db_port_settings )
}

And its corresponding invocation call might look something like this:
node "fooswitch1.bar.com" {
   include foo_switch
}

While this example is limited by the vendor contributed library extensions in Puppet
to layer 2 operations, there are no real limitations on the functionality that could be
exposed in the future. It should be noted that similar functionality limitations exist for
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8. The return flows, for the most part, traverse a single device (firewall, and even that may not be necessary).

alternatives like OpenStack Quantum, though this should be addressed in a subsequent
release of the API. That is, it’s just a question of the effort the vendor puts in to support
and expand the API over time to enable layer 3 services, overlays, or services.

Network Function Virtualization (NFV)
In “Data Center Orchestration” on page 299, the operator offers services that include
the use of virtual appliances (e.g., firewall). In general, the use of these appliances can
be orchestrated in a way that allows for simple traversal of a pipeline of operations where
logical interfaces representing both an ingress and egress from the tenant network create
a simple traffic flow pattern. This is in fact at the heart of network function virtualiza‐
tion (NFV) and how those functions are chained together using a concept called service
chaining (Figure 11-7).

Figure 11-7. Our data center service chain; there could be additional complexity in the
overlay derived from the high availability strategy (active and standby VMs shown, but
active/standby devices are more likely from a throughput standpoint)

The meta concept around NFV is that in the definition of the service for all the tenants
in our example is one fundamental service chain: ADC-Firewall for all traffic ingress
from the Internet.8 It is actually two, in the case of the VPN/private network cases. The
actions by the appliance are either forward, modify-and-forward, or drop. No additional
logic is required. No metadata is necessarily passed from one service element to another.
There is no significant branching logic in the chain.

Service chains are generally constructed by some controlling or orchestration entity
(i.e., an SDN controller). This entity is responsible for the provisioning (i.e., placement)
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of the services, and then the chaining of them together. The actual per-tenant configu‐
ration of the services such as firewall and gateway can vary but need to be maintained
by the NFV controller or orchestrator. The transparency of the provisioning effort at
this point in time may depend on the orchestration vendor selected and the firewall
product deployed. If they are from the same vendor, there is a good chance that flow
through provisioning (transparent) is possible. If they are not, some degree of trans‐
parency could be maintained through a higher-level broker (OSS) that interfaces with
both the SDN controller and the firewall vendor EMS/provisioning entity. The same
could be said about any appliance/service-chain relationship (today).

The complexity in the chain in this example will be derived from high availability and/
or a load balancing use case that we will discuss later in the book (creating the bowtie
seen in Figure 7-10 in Chapter 7). We should note too that this is not meant to imply
that all data center service chaining is fundamentally simple, as some configurations
can be quite complex to not only provision correctly, but to maintain over time.

NFV in Mobility
Much more complex chains may evolve, particularly outside the data center in the de‐
composition of integrated network platforms, particularly those that deal with broad‐
band subscription or mobility (e.g., EPC). Of course, it’s the vision that many of these
services will move into the DC.

The reasons behind this are the per-subscriber nature of the service customization:

• For a typical mobile subscriber, there can be multiple chains: HTTP traffic (L4
filtering, ADC, Media Optimization, Caching, CGN, FW—stateful and stateless),
Peer-to-Peer (DPI, CGN, FW—stateful), VoIP and others—some of which may
require session proxy. (Ad hoc analysis of current mobile service providers potential
use cases has shown an average of 7 to 10 possible service chains.)

• Service chain characteristics depend on business aspects (e.g., sponsored charging
for traffic toward a specific application server) and not on network characteristics.

• Service chains are dynamic and personalized.
• Because of the per-subscriber nature of traffic treatment, some metadata or context

may need to be associated with the chain OR

What is typically referred to as the Gi LAN (based on the 3GPP interface nomenclature)
or service LAN is currently a series of value-added services with traffic steering based
on VLAN. This is originally set by APN matching and subsequently reset through DPI
action—advised by policy interaction (Figure 11-8).

One of the reconfiguration options for this service would be to send the traffic to a next
generation proxy. However, WiFi tethering is increasing in the mobile space, so a lot of
laptop traffic is going through the proxy, which is inefficient, costly, and adds latency.
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Figure 11-8. Typical mobile service LAN with a collection of value-added services
(VAS). The different APNs are mapped to VLANs. Further remapping may result from
DPI (e.g., VLAN 200, 300 branches).

Traffic steering (in the SDN sense, given current tools) is layer 3, making options like
steering based on URL impossible. Yet, this is the granularity required to differentiate
which VAS different customers might traverse.

A reasonably scalable solution might be a PCC-controlled subscriber binding to a ser‐
vice chain. In the case of OpenFlow control, a combination of VLAN ID per service
chain for local/legacy VAS, and data center VAS with additional MAC rewrite in the
encapsulation to direct to a Next Hop (in WAN and data center)—all done through flow
mods directed by the URL/IP to service chain mapping in orchestration (Figure 11-9).
This can be extended/scaled to a VxLAN or GRE encapsulation by replacing the more
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intricate (and potentially limiting) VLAN/NH-MAP flow modifications of OpenFlow
with a routable tunnel encapsulation (flow to VNID to service chain mapping). Some
legacy VAS may still require VLAN mappings to and from the tunnel overlay via a
vendor-specific gateway or within the network element (acting as a gateway on behalf
of the overlay orchestration). The TDF function allows the provider to leverage existing
application-based charging systems and dynamic policy- or business-related service
adjustments.

Figure 11-9. SDN control that performs per-subscriber traffic steering. Traffic is identi‐
fied by TDF (DPI) function. Local/legacy (doesn’t understand tunnels) VAS chained
via VLAN, otherwise VAS steering via tunnel overlay.
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9. HBase, Dryad, Spark

10. The Name node and Job Tracker functions can run on the same device, depending on the scale of the cluster.

It also represents a philosophical shift away from the bidirectional conversation between
application and network. In this model, the network control reacts to what it is presented
with via the policy engine and the DPI sniffer.

Optimized Big Data
The label “big data” represents transition in high performance computing from
purpose-built computing (i.e., SUN microsystems, CRAY, etc.) to an approach that takes
advantage of the economics of COTS hardware through the use of smaller, cheaper
devices that can be clustered together. This is accomplished using divide-and-conquer
approaches that dissect computational problems into small chunks both in terms of data
and actual computation, and spreads that across those smaller, less powerful but sig‐
nificantly less expensive hardware. It should be noted that adopters of big data techni‐
ques have noticed the natural affinity between the topological view and central control
of SDN and some big data applications.

In general, big data is not normally a virtualized environment because the hypervisor
overhead is unnecessary. Hadoop is one of the most popular of a class of cluster com‐
puting architectures for big data that uses an application controller to manage job re‐
quests.9 Hadoop is used for a class of applications called Map/Reduces, which process
tremendous amounts of data by breaking the problem (i.e., the data set) into a number
of sections/blocks, spread across a number of machines for parallel processing. This
system also takes advantage of Hadoop’s distributed filesystem—HDFS.

The main overhead in the application is in distributing the sectioned file, storing and
then collecting the results. This is magnified by a redundancy strategy that causes several
copies of the same block to be distributed in case one of the compute nodes fails—
replication is a hierarchical operation.

The Hadoop architecture has three functional components: clients, masters, and slaves
(Figure 11-10). The client is the ultimate end user of the cluster, submitting a job request
with a file to manipulate with instructions on how to manipulate/process it and col‐
lecting results. The master node in Hadoop has overall responsibility for file distribution
and managing the processing nodes. It depends and interacts with two other nodes: the
name node and the job tracker. The name node is responsible for the distribution/
storage, and the job tracker coordinates the compute.10
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11. Hadoop is also a layer 3 aware filesystem, so it works in a routable network, allowing the architect to limit
the size of layer 2 network domains and to potentially use Hadoop across larger areas. While WAN is possible,
there are practical limits. The reference is more to the point of being able to use the entire footprint of the
Data Center (to the limits of the spine and or aggregation switch bandwidth).

Figure 11-10. Hadoop architecture

The slaves are called the mappers and take the blocks and process them. The reducers
collect and aggregate the results. The job tracker controls the task tracker process and
also processes and coordinates jobs submitted by clients. The job tracker talks to the
name node to determine the location of the data being processed. The job tracker is also
responsible for submitted work to the task tracker nodes that have been chosen to do
the work. As a means of redundancy and high availability of the system, the task tracker
nodes must ping the job tracker at periodic intervals. If these heartbeat signals are not
received after some period of time, the job tracker decides to resubmit the job elsewhere,
can blacklist the task tracker, or just remember that this particular node’s performance
characteristics for the future because it may only be a temporary condition. It could also
denote the start of a host/server failure.

The name node keeps a map of where the file is and to which machines the blocks are
distributed. It has some level of topology awareness on its own, in that it understands
the relative position of hosts by a manually configured rack number associated with the
host by the administrator. The name node then works using algorithms that try to
optimally distribute the data to cut down on inter-rack transfers but still maintain sep‐
aration of the replicates so that redundancy/replication can work.11

The problem with this is the manual nature of the configuration (particularly in a large
and continually growing/adapting data center) and the less than dynamic nature of the
algorithm (there are assumptions about the relative performance in-rack that may not
always be true, particularly in the presence of other traffic).
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12. SCC Proceedings of the 2012 SC Companion: High Performance Computing, Networking Storage and Anal‐
ysis

13. The depiction depends on the nature of the OCS. If it is optical-electrical and hosts are Ethernet attached,
flow matching could be used to mux the traffic onto a dedicated lamba. In an all-optical switch, individual
lambdas could be used through the network of switches and muxed at the end node or muxed per-hop. There
were a lot of choices.

Using an SDN (OpenFlow) controller and a modified version of Hadoop (a modified
job tracker and task), an alternative more dynamic version of Hadoop can be realized
in a traditional switched/shared Ethernet-based topology (Figure 11-11). For example,
a recent study that optimizes the shuffle phase where mappers send results to reducers
by using OpenFlow-driven QoS so that the shuffle traffic can consume more link band‐
width has shown promising results.12

Figure 11-11. Modified Hadoop with SDN control giving Hadoop traffic favorable QoS
treatment (in a generic, Ethernet-switched data center architecture)

This solution can be even more attractive when the switching infrastructure is pro‐
grammable optics. In this case, optimized topology configuration can be implemented
as OpenFlow rules in an electro-optical network (Figure 11-12).13
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14. http://www.cs.rice.edu/~eugeneng/papers/HotSDN12.pdf

15. http://dl.acm.org/citation.cfm?id=2476992

Figure 11-12. Hadoop using an SDN controller (via Mesos, if desired) to create a tree
topology for mapper-to-reducer traffic in a network of configurable optical switches

Another recent study14 in this area shows the flexibility of the combination. Range was
derived from multiple tree topologies where reducers were closer to the root than their
associated mappers. This information was then used to reduce multihop transfers in
very scalable Torus or Hypercube network shapes that were ultimately enabled by
changes in the data shuffling strategy.

A further expansion of both of these ideas is suggested by binding the controller to a
dynamic resource manager for clusters (e.g., Mesos,15 which we incorporated in
Figure 11-2). By using a manager, the operator can run multiple frameworks in the same
cluster to control utilization (particularly for storage) and potentially share data (as
opposed to static partitioning).

What we have essentially created is a network-aware application that will attempt to
optimize its functions placement or influence their interconnection/plumbing based
on network knowledge. This differs in philosophy from optimizations based on network
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16. http://cseweb.ucsd.edu/~vahdat/papers/helios-sigcomm10.pdf

17. https://www.usenix.org/sites/default/files/conference/protected-files/osa-nsdi12_.pdf

level analytics—application-aware networks (e.g., Plexxi, Helios,16 OSA17) or the pre‐
vious TDF-enabled mobility NFV example.

Solutions like Plexxi can work both ways, as the Hadoop job tracker/name node could
be modified to export the list of nodes in a manner that can be imported as an affinity-
map (static) by the Plexxi controller.

Conclusions
Our health services-related data center has multiple target customer scenarios and
multiple resulting potential flows (and issues), with some customizable but recognizable
service elements (load balancing, firewall, and network gateway).

But data center orchestration doesn’t always have to mean complex, nor does it have to
incorporate SDN. To that end, we incorporated a DevOps example appropriate for a
simpler, VLAN-based data center deployment.

We ended by focusing on a specific application class—big data. In addition to intro‐
ducing how SDN can influence big data, we open (and purposely leave open) the dis‐
cussion about the role of SDN—whether it is to enable applications to be network aware,
the reverse, or (potentially) both.

In this chapter, we have attempted to illustrate some common yet useful data center and
NFV-related use cases. These topics had to be combined in the examples, as it is hard
to separate these topics today. While seemingly theoretical, the use cases are based on
real, albeit purposely anonymous, deployments, and public research. Data center or‐
chestration is the poster child application of the SDN effort, and given its tenure in the
spotlight, it’s hard to introduce a new use case, so we’ve shown and discussed some more
typical deployments. The future is bright for SDN, and the data center will be one of the
areas in which it will flourish going forward. We recommend you check back here often
for changes and advances, as they are rapid and continuous.
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1. These examples are not meant to be “cookbooks” (each would spawn its own book at an appropriate/usable
level of detail for that function), but rather a greater illustration of the use of SDN in basic traffic monitoring
application(s).

CHAPTER 12

Use Cases for Input Traffic Monitoring,
Classification, and Triggered Actions

Introduction
One category of use cases1 that seems to recur frequently is a variation on the theme of
input traffic monitoring or classification, and then taking some sort of triggered action
(or actions). The general premise is one of interception or detection of some traffic
pattern somewhere in the network—often at the edge or access point—that then results
in one or more triggered actions. The action or actions can vary and be quite robust:
from as simple as dropping incoming packets or as complex as triggering a query to a
radius server or an HTTP redirection. Once those actions are triggered, the system can
either return to its original state and simply process traffic as if it had never happened,
or alter its actions to do something else either implicitly, or as a consequence of receiving
a response from a query such as a radius request. Let’s investigate a few canonical ex‐
amples to help illustrate how this all might work, starting with the most basic input
traffic interception mechanism available: the firewall.

The Firewall
At its heart, a firewall is a system comprised of an input traffic pattern-matching engine
populated with a set of classification rules to match input traffic on. Classification rules
range in capability from quite simplistic and primitive, to complex regular expressions.
In all cases, each classification rule has a corresponding action that is taken by the engine
based on a positive match of the classification rule. Thus, the basic function of a firewall
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is to pattern match input traffic, and take an action. The action, incidentally, can be as
input to another rule, which might result in recursive or iterative rule triggers and pro‐
cessing. In effect, the firewall rules become almost their own programming language.
This is, in fact, how the most sophisticated firewalls operate today in order to handle
the myriad of rules needed to protect and control a modern corporate or service provider
network.

As an aside, another similar and often equivalent concept is called access control lists
(ACLs). These were the precursors to firewall rules and are often still limited to fairly
rudimentary matching rules. The advantage is that most high-performance routing
platforms implement the matching logic in hardware and can do the processing at quite
high rates, which is something that many firewall devices still cannot do. ACLs are
features you might encounter as a feature of most network routing and switching de‐
vices, not to mention the most inexpensive wireless routers you have at home.

Let’s investigate how firewall classification rules can be specified, as well as the resulting
actions. As mentioned earlier, at their heart, firewall rules are a 2-tuple consisting of
{<input pattern>, <action>}. A firewall typically stores the rules in an array format,
numbering each rule sequentially. Figure 12-1 illustrates this basic concept.

Figure 12-1. The salient components of a firewall service

The match-action rule can be something as simple as “allow all” or “deny from any
interface <n>” which would either forward any matching traffic or drop all incoming
traffic on interface n, respectively. Or they can be as complex as matching multiple
pattern fields within incoming packets, such as filtering on TCP port ranges, “drop from
any ipv4 TCP PORT 61000:65095”. Match-action rules can be then chained together to
form more complex actions, too. For example, you could jump to a matching rule group
if input traffic matched a certain pattern as in, “ACCEPT from 192.168.1.0/24 to Inter‐
face eth0 –j GOOD-DMZ”. In that example, you would jump to another set of rules
defined in the “GOOD-DMZ” rule group. To put these concepts together, let’s look at
some sample output from the Mac OS X pfctl firewall:
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Firewall
#
# anchor ruleset for the Adaptive Firewall
# anchor name: 400.AdaptiveFirewall
# see afctl(8), pfctl(8), pf.conf(5)
#
block in quick from 122.110.1.78 to any

In this example, traffic from a specific host (122.110.1.78) is explicitly blocked. This is
achieved by specifying an explicit classifier match pattern in the last line. If the firewall
matches input traffic coming from that IPv4 source address, the resulting action is to
block or discard the traffic.

As mentioned, rules can be chained to form more complex rule sets that give network
operators the ability to narrow down traffic patterns based on input conditions, or to
allow subsequent match rules to be fired only based on certain, possibly dynamic, input
conditions to exist. For example, input traffic rate limiting or input traffic shaping, as
it’s more well known, is really an action function triggered by receiving traffic above a
certain threshold. The resulting action is to drop or sometimes selectively drop (i.e.,
shape), input traffic matching those criteria.

It should be noted that firewall pattern matching can be quite sophisticated. Until now,
the discussion has centered on simple rules such as “allow” or “drop,” but there are other
possibilities, too, such as “rewrite” which instructs the firewall to modify parts of the
packet upon matching. For example, it is possible to do network port mapping within
the firewall. That is, when a pattern is matched, say, receiving a packet from any host
on any externally facing interface, it translates some port to one that is internally used.
This is a function that can be used to map a variety of services accessible externally to
internal hosts behind a Network Address Translation (NAT) gateway. For example, you
could define a rule set such as:

From any *.*.*.* port 22 interface wan0 rewrite dest 192.168.1.45 port 22000
From any *.*.*.* port 23 interface wan0 rewrite dest 192.168.1.46 port 23000

The first rule would match traffic from any host that arrives on the device’s “wan” or
externally facing interface with IPv4 port 22 and rewrite the ipv4 destination address
to 192.168.1.45 and the port to 22000. This could be used to map the normal secure
shell (SSH) traffic that comes to this network to a special gateway host that is configured
as the server with special authentication capabilities. The second rule similarly rewrites
traffic coming to this device with port 23 to port 23000 and sends it to host 192.168.1.46.
This effectively rewrites that traffic stream’s port to a special incoming one and sends it
to another special host. Figure 12-2 illustrates how these input rules could be applied
to a firewall device.
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Figure 12-2. A basic firewall

Firewalls as a Service
So far, the discussion has been about the capabilities of just about any firewall you will
encounter in a network today. Traditionally, these functions were implemented in sys‐
tem software that ran on physical devices that were dedicated to that specific function.
In fact, many of these devices were built with hardware that was optimized for these
functions, including optimized input pattern matching hardware interfaces and switch‐
ing fabrics that connected the input port(s) to the output port(s) of the firewall.

So the question is: why virtualize this function? The answer is simple: flexibility and
cost. Firstly, the flexibility of taking the software out of a custom designed device and
running it on commodity hardware—let’s call it Intel x86—is very appealing. It allows
network operators to have a variety of options about how they assemble their network,
or more importantly, change it later. The other option they have is to also shut that
software off and run something else in its place! If you imagine the requirements to
physically move a firewall—both physical and those of the operational support system
(OSS)—it should be clear that it is cheaper and far faster to move the firewall software
rather than its hardware. The flexibility of placement also lends itself to service chain‐
ing, as we discussed earlier in Chapter 7, as a potential use for chaining together physical
and virtual services; a firewall, virtual or otherwise, is considered a network service.

It should be noted that running commodity hardware is not a new idea, and in fact,
many of the firewall devices that you will encounter are and have been running on x86-
based devices for quite some time. That is, the control plane software (the software
responsible for maintaining the rule sets and the general control configuration, user
interface, etc.) has been executing on an x86 CPU for quite some time. That CPU did
not actually process user packets; instead, special switch fabrics and purpose-built port
processors were created to connect the input and output ports, with special pattern
matching hardware that was then essentially statically programed to look for specific
patterns and ultimately forward, drop, or modify a packet. The instructions (i.e., rules)
were programmed in that hardware by the system software or control plane that ran on
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the CPU. In effect, you had a split system with the brains residing in the x86 CPU, and
the brawn doing the heavy lifting of the packets down in purpose-built hardware.

What is new in the modern hardware scene is that off-the-shelf network interfaces that
were once woefully inadequate are now approaching the packet processing performance
characteristic of custom-designed hardware. Furthermore, modern CPUs can handle a
great deal of pattern matching capabilities, especially when optimized for packet pro‐
cessing such as been done by the Intel Data Plane Development Kit (DPDK) system.

Given the great improvements in packet processing with cheap, off-the-shelf hardware,
we now can not only imagine but actually run virtual firewall instances. While not at
100% the same processing performance as dedicateed hardware, when you attach the
virtual firewall instance to a single CPU and network interface, you can attach the
problem using a divide-and-conquer approach and achieve nominally the same ap‐
proach, albeit with more moving parts to manage. That is, if you spread a copy of the
virtual firewall instance to a number of x86 CPUs, all with their own network interfaces,
and appropriately steer input traffic to them to handle a subset of the overall input traffic,
you have effectively sliced the input traffic workload among many devices rather than
relying on one big (and expensive) piece of custom hardware.

This leads to the second advantage: price. There is a break-even point for spreading
workloads across commodity hardware that differs depending on the actual product in
question, so let’s not attempt a guess at the actual point here. However, since many
network operators are moving to generic x86-based data centers for other computa‐
tional tasks, one can imagine that they have spare capacity available for firewall pro‐
cessing. Being able to use the same hardware for multiple purposes is a clear optimiza‐
tion of the overall equipment cost.

Figure 12-3 demonstrates how this scenario could be set up. Notice the mixture of real
and virtual firewall services deployed in the network. One note is that the operator must
understand that the virtual machine’s placement within the network is critical, as is its
connection to the actual network, because this will affect its packet processing rate, as
well as the delay the packets it processes experience. For example, poor placement of
the virtual machine, geographically, will result in additional hops of forwarding, thereby
adding delay to the packet’s journey through the network. Also, placement of a virtual
firewall on a physical system that is already well-loaded, either in terms of CPU pro‐
cessing or packet processing on its input interfaces, can also result in delay or even
packet loss.
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Figure 12-3. Deploying physical and virtual firewall network services

A final twist on the virtualization of firewall services is to add centralized control of the
firewall service itself. This can be implemented as a combination of centralized control
of not only the service (and the virtual machine in which it lives), but also the actual
firewall rules that are used to drive the pattern matching function of the firewall. If you
look at the instances of firewalls both virtual and real in the previous example, you can
imagine how a centralized controller could control and orchestrate the network of fire‐
walls from a centralized point, as well as from a distributed approach. In the case of the
former, a network operator would have the advantage of a single point of control (log‐
ically centralized) from which to enact changes to the configuration state of any firewall
in the network. In the second decentralized case, the operator would have to first un‐
derstand which control point controlled which subset of firewalls before then adjusting
the configuration.

Network Access Control Replacement
Network Access Control (NAC) might be considered a derivative or simplified case of
firewall as a service. NAC is commonly achieved through the use of switch/router Access
Control Lists (typical of fixed port ownership relationships like those exhibited in an
Enterprise VPN environment) and/or policy-based solutions hinging on radius/diam‐
eter interaction between a policy server and the switch/router (typical of per-subscriber
sessions on shared access infrastructure).
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2. See prior chapter for references that extend flowspec to make it more usable for this and other purposes.

3. The authors have seen customer RFP requests to treat OpenFlow rules as if they were dynamic ACLs, main‐
taining “first forwarding lookup” in the default IP forwarding tables. But, to our knowledge, this has not been
implemented.

These solutions have their limitations. Critically, most implementations allow for a pre-
compiled (i.e., statically programmed) ACL that is less suitable for a dynamic (fast-
changing) environment. That is, the rules are pushed down to every switch in a network
via a provisioning system, effectively reconfiguring every switch. For most devices, this
is rather time-consuming because configuration operations take on the order of minutes
to tens of minutes. Some early adopters of SDN technology want to use the more dy‐
namic nature of SDN as a NAC replacement strategy.

To illustrate Network Access Control with a centralized SDN controller, let’s use an
OpenFlow-based example. It should be noted that you can use other mechanisms to
implement this use case, but OpenFlow has characteristics that make it particularly
appealing for solving this problem, such as the completeness of the solution compared
to alternatives (at the time this book was written). Also in particular, OpenFlow allows
matching across a wide swath of the datagram header, while alternatives like BGP flow‐
spec (IETF RFC5575), though more dynamic than the static ACL, lack this range and
are currently limited in universal address family support and IP prefix related filters.2

Further, if the vendor implementation of OpenFlow rules does not reuse the ACL or
firewall filter structures effectively, implementing OpenFlow as a true forwarding table
entry rather than a feature phase of forwarding, you can avoid the compilation dilemma
of typical ACLs. That is, you can achieve rather painless and dynamic adjustment of
NAC rules.

Of course, this would normally relegate the privilege of first lookup to the OpenFlow
table as a tradeoff.3 In cases where the implementation does not reuse the ACL or firewall
structures, the implementation will suffer from a variety of performance and scalability
penalties. In particular, a naïve implementation will attempt to literally program each
OpenFlow rule verbatim without the benefit of rule compilation. Rule compilation ef‐
fectively compresses and optimizes the rules down to their salient components and
effectively shrinks down the number and complexity of the actual rules used to program
the hardware. This not only means less space needed to store the rules in hardware, but
potentially more optimal processing by avoiding unnecessary look-ups or recycling of
rules.

Using the central controller, we will attempt to address what at first seems like a relatively
simple problem. That is, constraining the use of the corporate IMS/SIP subsystems to
approved desk or wireless IP phones and restricting access to the corporate network to
registered devices in a rapidly evolving bring-your-own-device (BYOD) environment.
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4. The operation of the network edge as an OpenFlow hybrid is optional. One could argue that NAC is implicit
in a pure OpenFlow network.

Let’s preface the discussion first with some background information. Though the IT
department originally considered using 802.1X manufacturer identification, the truth
is that not all devices support 802.1X, and the brand of IP phone selected for their offices
falls into this category. Furthermore, after examining a multivendor solution, the IT
department also noticed a number of incompatibilities between devices. So in an effort
to not get hemmed in to a single vendor for their enterprise Ethernet switches, this
example was constructed.

The building blocks of the solution are illustrated in Figure 12-4. The approach of the
solution is straightforward and involves the use of a simple radius glue-logic application
that resides above an OpenFlow controller to verify the registration of the each device
entering the network. The capability of an OpenFlow (v1.0) enabled device (i.e., the
access switches) is only required to match traffic based on source MAC address and
perform PACKET_IN and PACKET_OUT functions. Switches must also be able to punt
packets matching a rule to the controller, or shunt the traffic to a VLAN. It needs to be
noted that the underlying network uses IP/MPLS forwarding to provide layer 2/IP in‐
frastructure for packet delivery from edge to edge.

The combination functions as an OpenFlow hybrid network.4 The connection between
the two functional sides of the hybrid can be made using an Integrated Route-Bridge
instance in the OpenFlow domain and OpenFlow NORMAL functionality, or by using
a logical port structure (e.g., logical tunnel) that has ends in the OpenFlow domain and
a layer 3 routing instance (a RIB association) as the incoming/outgoing port in Open‐
Flow rules.

When a client device sends its first packet, a lookup is done to see if a rule matching
that specific source MAC exists already in the switch. If this fails, the packet is sent using
a PACKET_IN operation to the active controller. This same controller is responsible for
creating rules for the virtual switch inside the access switch. This switch is also where
the controller delegates the ingress port.

In order to avoid wasting cycles in the authentication glue logic on the controller, a cache
is maintained of recently authorized flows on that same controller. This is the case even
if the flows are inactive on a particular switch. Since the IT network users are expected
to be mobile, they conceivably could change wireless access points resulting in a po‐
tential change in their association with a physical access point at the edge of the network.
If a rule exists, the controller will populate the switch with that rule and perform PACK
ET_OUT, which will return the original packet to the pipeline for forwarding.
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Figure 12-4. Simple network access control using OpenFlow in a hybrid network

The authentication lookup can result in one of the following:
AUTHENTICATED_MAC_PHONE

The MAC is a registered MAC and it is an approved phone type for the IMS/SIP
subsystem. In this case, the flow modification sent to the switch will indicate that
all traffic matching that MAC will be allowed to access the IMS/SIP region of the
network. This would be expressed simply in an outgoing port action for that match
of the logical port that connects to that infrastructure (be it layer 2 or layer 3).
Depending on the underlying network plumbing (for example, if a logical tunnel
doesn’t represent this access, but a shared layer 3 construct and the NORMAL action
does) the rule may need further embellishment to specifically match on the IP pre‐
fix(es) assigned to the IMS/SIP system as destination IP.

AUTHENTICATED_MAC
The MAC is a registered MAC, but not a phone. In this case, the flow modification
sent to the switch will indicate that all traffic matching that MAC will be allowed
to access the intra/internet regions of the network. This could be done by matching
a fairly generic flow rule based on the source MAC with an outgoing port connected
to that region of the network, with similar caveats about the underlying plumbing
(in the case of a shared layer 3 construct and NORMAL operation, additional match
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5. SDN is also used in this example to normalize the deployment of access control and to deploy in a vendor-
independent manner—free of the ACL syntax/semantics specific to any particular vendor (which is one of
the fundamental appeals of the use of standardized SDN protocols as provisioning tools).

6. There are other options when using OpenFlow (to achieve QoS treatment on a node-by-node basis—as‐
suming all the nodes are controlled by OpenFlow). For example, the “optional” Set-Queue action in OpenFlow
could assign the packet to a queue, assuming that the switch supports queue and queue property discovery
(configuration of the queue parameters MIN/MAX rates and an EXPERIMENTER field to communicate
information are supported in OpenFlow version 1.2 and beyond). This could be combined with the “optional”
Meter structure of OpenFlow 1.3 to affect many different QoS actions. However, because these are recent,
optional, and the actual queue configuration is still separate from the OpenFlow wire protocol, a simpler
example is used that relies on external (non-OpenFlow) QoS treatment.

rules would explicitly deny access to NORMAL for flows with a destination IP in
the prefix of the SIP/IMS region).

AUTHENTICATION_FAILED
The MAC isn’t a registered MAC. In this case, the flow modification sent to the
switch will indicate a rule that matches all traffic from that MAC with an outgoing
port that represents the PURGATORY region of the network (this is the customer’s
own colloquialism for either DROP or a network on which a registration server
exists0.

There are potential modifications or problems unaddressed by this example that will
lead to some refinements. To this point, we’ve only exhibited some minimal policy
dynamics that were hard to express with a traditional access control list on the access
switch. 5 In typical networks, it is common to find more complex ACLs.

Extending the Use Case with a Virtual Firewall
The limits to the model, and where we depart from simple Network Access Control, are
seen when supporting any authenticated MAC address. This opens up the realm of
possibilities from just VoIP devices to any computing device that could be attached to
the corporate IT network. Further complicating the simple scenario might be treating
the traffic from both a desk phone and the laptop softphone or media application with
higher quality of service (e.g., by marking the packets in the flow with a special DiffServ
Code Point (DSCP) that results in that traffic being honored as a higher class of service
in infrastructure forwarding devices).6

The unfortunate truth is that a simple flow-matching rule won’t work here for a variety
of reasons. First, most media applications use RTP in UDP encapsulations. These in
turn use amorphous ports for the sender and receiver once flows are established. The
flows are established by a separate control protocol. This is typically SIP, but in some
evolving services, the control channel may be encrypted, potentially making signature
detection much less efficient. The alternative of not using the firewall at all and simply
treating all unknown UDP packets preferentially is considered too easy to exploit by
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7. “On top” does not imply the firewall application Virtual Machine is co-resident with the controller, since the
northbound API for OpenFlow controllers is normally RESTful. But you do need to be mindful of any latency
pushing the packet from the controller to the application may introduce and that impact on the apparent
“responsiveness” of the application. For this application, if the media flow is a video (particularly a video chat)
the flow is expected to be large and of reasonable length (assuming the function is more like a meeting and
average meeting times are measured in 15 minute increments). If the media flows were all VoIP, the respon‐
siveness of the application may be more critical, since the flow length may be relatively short (by the time the
flow entries are in place to enable QOS treatment, the flow may have ceased).

8. This pathway is the traditional “slow” path for routers and switches (lower packet throughput, more CPU
usage for the agent process on the switch/router).

9. At the time this book was written, there is little (if any) experience with using the UDP-based PACKET_IN
functionality.

10. Incidentally, the Virtual Tap application is a specific application for an OpenFlow controller that uses this
same mechanism to mirror traffic to a monitoring device.

end users. At this point we are going to need the services found traditionally in the
firewall to detect these flows through an application signature, requiring the firewall to
monitor a certain percentage of traffic or a flow sample that can then be used for de‐
tection of an application signature.

This approach has two potential solutions. First, build the firewall-like application on
top of the controller,7 or second, identify the traffic using a firewall (real or virtual)
somewhere in the flow. This application would then perform appropriate QoS treat‐
ment. To build the application on top of the OpenFlow controller, you would have to
use the PACKET_IN capability of the OpenFlow switch/controller combination or create
a tap rule.

To avoid overloading the firewall application, you can use proactive flow rules limiting
the PACKET_IN traffic to unknown UDP ports. In this case, you have to be both careful
and aware of the changes in this mechanism in the different versions of OpenFlow. If
our controller and switch don’t support OpenFlow 1.3, then the PACKET_IN mechanism
has to use the TCP control session between controller and agent. Because the agent is
maintaining the sequence number for the TCP session, it’s difficult (if not impossible)
to remove it from the packet path8 or do any sort of performance enhancement for the
packet processing, making this approach to a firewall application infeasible. It should
be noted that with the advent of OpenFlow 1.3, a UDP flow can be used for PACK
ET_IN, which could make the application on top of the controller more palatable.9

Another way to build an application on top of the controller is to create a tap rule that
mirrors the traffic to the firewall app. The rule will duplicate outputs to two separate
ports as the action on matching the unknown UDP flow.10 In this scenario, the appli‐
cation would sink/drop the matching traffic and send back flow modifications via the
controller API when the application senses the media applications and identifies the
ports for specific flows.
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11. http://www.csl.sri.com/users/vinod/papers/fortnox.pdf

12. http://www.openflowsec.org/OpenFlow_Security/Publications.html

An example of this approach is seen in the FortNox11/FRESCO12 combination (SRI),
which combines a conflict mitigation module (making sure flow rules from multiple
sources follow policy) and a scripting/development framework that can allow plug-in
type modules to reflect/scan/affect traffic forwarding.

Since the appeal of the on-top and the tap solutions may be limited, you could try an
alternative solution that uses an in-line firewall but manipulates the UDP traffic in a
way that reduces the burden on the firewall (Figure 12-5).

Figure 12-5. Modified network access control using a firewall and OpenFlow in a
hybrid network

The particulars of the sample design include:

• There is one IRB (or logical tunnel) interface for forwarding all “non-UDP traffic”
to routing instance using OpenFlow action “Normal”. This IRB (or logical tunnel)
interface is configured as an OF port in OpenFlow configuration stanza(s) on the
switch/router.

• Two logical switching constructs are used to create a loop for the unknown UDP
traffic to be treated (by the firewall) for QoS. The logical switches allow for some
rule partitioning for administrative reasons. The external loopback could be created
physically via the firewall (versus between the logical switches). There was some
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thinking that the switch port resource was less expensive than the firewall resource
at the time of this design.

• A port-to-port OpenFlow rule in Switch B pushes all traffic returning from the
firewall, including the (potentially) treated unknown UDP through the loopback
toward Switch-A. A port-to-port rule in Switch A then pushes the traffic from the
loopback to the IRB (and a static associated QoS policy).

Feedback and Optimization
Both the firewall application on the controller and in line within the firewall will have
a common optimization goal: minimize the traffic sent through the firewall. This is
based on the assumption that the firewall resource introduces additional hardware or
operational costs that are defrayed by managing the scale of the solution. Once a specific
media flow, including the amorphous ports, has been identified by the application, a
feedback mechanism that puts in place a specific flow rule should pipeline this traffic
to the egress port.

However, in our OpenFlow example, QoS treatment requires the controller/switch to
support either the optional SET QUEUE primitive as mentioned in previous footnote
with an associated dependency on the support of messaging to discover port queue
assignments and properties, or the optional ability to set DSCP of a packet directly. The
latter will rely on the externally configured QoS policy on the egress port. The minimum
version required for either of these capabilities is OpenFlow 1.2.

The ability to create feedback between network elements, services, and a logical point
in the network is critical in order to optimize the use of network resources, and it is
fundamental to many examples, regardless of the SDN control scheme or protocol used.
More to the point, although we have used an OpenFlow example in this section, it is
fundamental to enable and facilitate the feedback loop between network control and
network resources. Such feedback loop principles are discussed in the example that
follows.

Intrusion Detection/Threat Mitigation
The Intrusion Detection/Threat Mitigation System (IDS) illustrated in Figure 12-6 uses
a similar strategy to minimize the load on the network service element (a real or virtual
IDS system) by deploying an interior perimeter of rules:

• Generic rules that do flow forwarding based on IP source and destination prefixes.
• More granular (i.e., longer match and higher preference) for specific and approved

flows between these sources and destinations.
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• A rule handling flow misses (UNKNOWN traffic) with a rule that will create a copy of
the packet using an action set like that of the tap application, and forward a miss
to the IDS. The IDS software can be doing device profiling flow signature matching
and other tasks.

• Depending on the outcome of the analysis, a specific flow entry allowing passage
of the traffic can be installed via an API call to the OpenFlow controller at the
interception point or a specific flow entry. The action would be to DROP the flow.
This rule can be installed on the ingress switch(es).

In either case, the flow will not continue to traverse the IDS/UTM.

Figure 12-6. Dynamic threat mitigation using OpenFlow

Optimally, this feedback loop would create a learning system wherever possible. It needs
to do this so that default rules and policies are incremented to capture these learned
behaviors. Some of the more logic-driven aspects of intrusion detection and threat mit‐
igation such as the logic that tracks changes in expected behavior or profiles—like when
a known print device begins to initiate flows associated with a compute device, up to
and including network mapping or port scanning—may be too difficult to capture in a
small set of rules and thus defeat learning. However, some degree of learning could be
expected with this particular example.
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13. We have been dealing with NAC and its derivative examples in this chapter, but have migrated the example
into the territory of service virtualization, even though we haven’t explicitly shown a chain.

If you consider service chaining as an SDN application,13 not only will feedback loop
optimizations be applicable, but also triggered behaviors (e.g., based on DPI inspection
and policy rules) will make flow paths even more dynamic. This further limits the ca‐
pability to learn a larger permanent flow rule set.

Other examples of such a feedback loop abound, and in particular, the recently added
3GPP Traffic Direction Function (TDF) in the mobile domain, as shown in
Figure 12-7, shows similar functionality.

Figure 12-7. Traffic Detection Function

The TDF (normally a DPI device) is instructed by the PCRF (via the Sd interface) to
look for specific application flows, and the TDF uses the same interface to alert the PCRF
when they are detected. In turn, the PCRF may then instruct the PCEF to install a change
rule using the Gx interface.

Conclusions
This chapter has demonstrated use cases for ingress traffic detection. Its examples
showed how input traffic could be classified using simple firewall rules or access control
lists (ACLs), and corresponding actions taken. These included the canonical firewall
device and the virtualized firewall device. It then expanded from these simplified ex‐
amples to demonstrate how the Network Access Control (NAC) protocol could be re‐
placed using two key tenants of SDN: logically centralized control and ingress traffic
detection. It then demonstrated how this could be further adapted to implement dy‐
namic threat mitigation. Along the way, we discussed why it is important to enable
another key tenet of software-defined networks: the application-controller feedback
loop, and specifically, why certain optimizations could not be achieved without it.
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CHAPTER 13

Final Thoughts and Conclusions

What Is True About SDN?
Most of the ideas that motivate the exploration of SDN start from revolutionary ideas
but often normalize through experience. This happens through the natural evolution
of prototype construction, lab trial studies, and early deployments. All of these even‐
tually lead to evolving our perspectives and (hopefully) help make our networks better
at delivering services more efficiently. This can be visualized in Figure 13-1, which shows
how concepts move the present method of operation for networks to some
different/new future method of operation.

Figure 13-1. SDN will change our present method of operation (PMO) to a more opti‐
mized future mode of operation (FMO), which may not be as drastic as originally
claimed (the red zone)
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Though it’s too early to pick a winning technology, or even a winning definition of SDN,
one thing remains true—the explorations into SDN will change our present method of
operation. The question is: will it be for the better?

There is something going on here, but it might not be obvious because it’s under the
surface in many cases.

We can’t forget that there is an operator need driving SDN research and development.
By 2010, the operation of large network providers had reached a stagnation point of
innovation. The combination of OSS/BSS systems required to support a myriad of
services in a large-scale multivendor environment was a drag on innovation. Worse, it
was a drag on the bottom lines of service providers. Data growth from the influx of new
video-enabled, “always on” mobile devices, as well as fundamental shifts in the way
content is consumed (i.e., now streamed) was triggering staggering infrastructure de‐
mands for growth. In short, the very model of the Internet was morphing into a quickly
changing, content-centric interrelationship between providers, versus the hierarchical,
slowly changing access paradigm of the past. Evidence to this was the fact that new
network services, enabled by new features in existing vendor software offerings or new
vendor hardware offerings, could take at a minimum, 18 months to develop, integrate,
and deploy. Meanwhile, new service providers such as Google, Amazon, and Facebook
had found a genuinely better way.

The following fundamental ideas will endure because they in some way address both
the chaos and stagnation of the present:

• Uncouple our provisioning from vendor-specific semantic dependencies.
• Virtualize the networking elements to some degree to allow greater scale and lower

cost through flexibility in pooling and dynamic relocation.
• Abstract network topology as a service in ways that free a networked application

from needing to know the arcana of network protocols or drink an ocean of data.
• And generally promote the open exchange of information between the application

and the network.

SDN may actually redefine our assumptions and expectations around network man‐
agement. For the rapidly growing number of virtualized network elements such as hy‐
pervisor switches, routers, and bridges, SDN controllers will function in ways that re‐
mind us veru much of the EMS/NMS/OSS of yester year, by providing provisioning,
event management and analytics streams.

What we’ve attempted in this book is to illustrate the broad arc of SDN:

• The friction between distributed and centralized control models.
• How OpenFlow fits into the discussion of SDN, but in reality does not define or

even dominate it any longer.
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• How controller designs have evolved over time to become clustered/federated sys‐
tems from the single entity practical only in trials and research. They have evolved
to support multiple protocols and adopted considerable infrastructure to support
application development and design considerations around state consistency.

• The impact of virtualization technologies and the major applications enabled by
SDN when it mixes with virtualization and how this mixture moves the SDN con‐
troller into a future role in network management: data center orchestration (today),
network function virtualization (near future), and fully integrated virtualized com‐
pute, storage and network with service chaining (future).

• The underlying goal of programmability, the need for openness and standards
(which are implied in concept but incomplete in reality), and the evolution of con‐
trollers into development frameworks that provide robust, network-centric appli‐
cation services.

Mundane details often derail seemingly good ideas like SDN. With SDN, these details
are tied up in management, which to most is likely not exciting; however, the reality is
that hard work and sometimes mundane efforts are necessary to operationalize a new
paradigm, as well as to optimize its and economics. This is the journey SDN has begun,
but we predict is not even close to finishing.

Economics
Various bloggers have stated that the virtualization and SDN combination is, in the best
case, an economically a zero-sum proposition for the consumer. In the worst case, it is
actually a negative proposition. Personal experience has shown us that this is current‐
ly true. Research firms (e.g., IDC) also show the same in their recent data. In fact, one
such study shows an 80% increase in IT management costs in data centers that can be
attributed to the rise of virtualization. But this does not mean we should stop here; there
is much work to do to get us past this point into the realm where SDN can actually
provide a net gain or benefit for the network operator.

Evidence of this is the introduction of an open source SDN controller called The Open
Daylight Project that might address and further optimize the needs of commercial de‐
ployments. With this step, the market is essentially acknowledging that the value in SDN
is in the applications, and no longer as much in the SDN controller or even the hyper‐
visor.

Consumers still want and need SDN (particularly if they have embraced virtualization).
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The economic result of SDN for the short term may be a shift in the
component cost of solutions that creates an even larger software com‐
ponent (both in new business apps and new/requisite management
apps) of the solution sum.

This is not threatening to the existing ecosystem of network element (hardware) vendors
—as long as it is their own software sales that are pulling through sales of their own
hardware (i.e., they keep most or all of the sum). Some vendors are even claiming gains
in their high-end hardware by adopting SDN concepts.

Embedded network element vendors are actively doing the math on the costs and ben‐
efits of virtualization of their embedded platforms (e.g., BNG), and when they do, their
calculations have to take into account optimizations that new entrants might make (e.g.,
discarding unnecessary functionality that clutters the code base, dissembling the com‐
ponents in more cost-effective configurations), and currently see the packaging (power
in W/Gbps and footprint) and silicon cost/performance having advantages over the
current generation of Intel/ARM processing (with IO optimizations).

Whether this will always be the case remains to be seen, but they have already begun
the refactoring of services to comply with customer desires and create new, optimized
versions of these platform solutions that include x86 compute for some parts.

So, while direct economic impacts of SDN are harder to find, the indirect consequences
have already begun to manifest.

SDN Is Really About Operations and Management
We’re probably not done spending on or exploring the management aspect of SDN yet,
as a new generation of BSS/OSS is still evolving to be able to keep up with a more virtual/
programmable/nimble network.

Traditional B/OSS vendors like BMC, Amdocs, CA, and others are struggling against
IPsoft, Tail-f, and ServiceNow in the Cloud OSS market as the evolution of a real-time
OSS for these environments (in some cases, incorporating advanced capabilities like
integrated policy engines and embedded analytics) has begun.

This environment also opens opportunities for traditional network equipment vendors
(e.g., Cisco, ALU) to participate more fully in the next generation of OSS/BSS (as well
as venerable SDN heavyweights like VMware).

In the end, one of the main thrusts and motivations of SDN is about optimizing oper‐
ations. Earlier in the text, we talked about the network-application divide. It is this
analogy that forms the basis for much of what SDN is out to solve—or at least make
better, both for the network user and the network operator.
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Multiple Definitions of SDN
SDN is still evolving an operational level of abstraction. There are different general
definitions of what SDN is that have a correlation to the amount of the distributed
control plane that is maintained (Figure 13-2).

The ONF offers a forwarding plane SDN definition (a.k.a. clean slate), in which there
is no real vestige of the distributed control plane (arguably, there is a necessary thin
layer of distributed control plane in the high-frequency loop applications like OAM and
BFD) and the layer of abstraction is hop-by-hop forwarding entries to construct a flow
path (versus the overlay SDN model, which would only program the tunnel heads and
tails on the periphery of the network).

The overlay SDN definition focuses on creating a flexible overlay of tunnels to create
virtual networks and presumes that the distributed control plane exists in the underlay
and is actually helpful. For example, ISIS is very good at element discovery, very stable,
and thus helpful with the “bootstrap the network” problem for the underlying network.
The underlying distributed control plane is assumed to be somewhat optimized (e.g., it
supports a high degree of ECMP). And, while this mode assumes the reuse of the existing
distributed control paradigm, it is a more simplified distributed control in comparison
with the control plane SDN in that it doesn’t presume the use of MPLS or higher level
processes like BGP. Rather, the simpler distributed control paradigm is combined with
a controller for managing the bulk of external state (which may have been carried in
BGP address families in the control plane SDN model).

Figure 13-2. The many classifications of SDN (abstraction and control plane)
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Traditional network equipment manufacturers put forth a control plane SDN definition
in which the programmability of the existing IP/MPLS RIB (and attending routing and
security policies) is the focus. This mode assumes the reuse of the existing distributed
paradigm (with some potential simplifications). This higher level of abstraction relieves
the controller of some of the requisite knowledge of element hardware forwarding ca‐
pability attendant in the forwarding plane SDN definition:

• In control plane SDN, there is room for some logical centralization, particularly for
a centralized proxy that distills the necessary set of forwarding entries applicable
for a specific application on a smaller/weaker forwarding entity (e.g., a hypervisor
based switch).

• In control plane SDN, there is room for simplification (e.g., eliminating the distri‐
bution of labels via LDP or RSVP with segment routing or eliminating the need for
extensive configuration to create and populate VRFs with XMPP).

• In control plane SDN, it will be possible to do source/destination-based routing
with segment routing in combination with programmability extensions to a cen‐
tralized PCE server (without the creation of an overlay mesh of LSPs).

For all modes of SDN, the mantra of logically centralized but physically distributed
(which was coined to address the reality of highly available geo-dispersed deployments)
is still distributed at its heart, where the problems with state consensus have just moved
to another distribution mechanism.

Are We Making Progress Yet?
In writing this book, we see repeated examples of excellent application ideas bound to
proprietary controllers through proprietary APIs. The proliferation of a different type
of silo mentality is not the solution for the current OSS/BSS problems SDN has set out
to address. Without true application portability and some reasonable expectation of
interoperability, SDN won’t progress and will fizzle out as yet another fad. It remains to
be seen if the framework approach to controllers and the Open Daylight Project open
source initiative will create a de facto standard, or if one of the longer-winding stand‐
ardization roads like the IETF, ETSI, ITU, ONF (and so on) will bring a solution or just
add more confusion to the party.

While it’s good to be excited about SDN’s concepts and the ways in which it’s taking us,
it is easy to get caught up in the tales of unicorn sightings. To this end, we believe there
is still much research and plain hard work to be done in areas like troubleshooting
(overlays are more difficult than underlays to troubleshoot because forwarding is the
concert of all flow operations and we need a potentially new toolset), security, verifica‐
tion, and policy (much of which is being addressed in academia today and slowly en‐
tering standards and consortia consideration). Many of these areas will remind of us
hard work we did years ago in the operational areas around other new technologies,
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such as MPLS or IP in order to optimize their use for commercial networks. This often
mundane work remains ahead in the SDN area. So with this in mind, the duck on the
cover of this book does form an appropriate analogy for the state of SDN today and its
future: there is lots of work going on under the surface that may not be visible, or obvious.
But if it continues, it can very well propel that duck towards its goal.
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